Abstract:
A counterfeiting deterrent device according to one implementation of the disclosure includes a plurality of layers formed by an additive process. Each of the layers may have a thickness of less than 100 microns. At least one of the layers has a series of indentations formed in an outer edge of the layer such that the indentations can be observed to verify that the device originated from a predetermined source. According to another implementation, a counterfeiting deterrent device includes at least one raised layer having outer edges in the shape of a logo. A light source is configured and arranged to shine a light through a slit in a substrate layer of the device and past an intermediate layer to light up the outer edge of the raised layer. The layers of the device are formed by an additive process and have a thickness of less than 100 microns each.
Abstract:
A method for removing a volume of tissue from a tongue in a patient to treat sleep apnea may involve cutting tissue from the tongue using a tissue cutting device having a shaft and at least one moveable cutting member attached to the shaft at a distal end of the tissue cutting device and moving the cut tissue through a channel of the shaft in a direction from the distal end of the tissue cutting device toward a proximal end of the device. A device for removing a volume of tissue from a tongue in a patient to treat sleep apnea may include a shaft, at least one moveable cutting member disposed at a distal end of a distal tip of the shaft, a handle coupled with a proximal portion of the shaft, and an actuator.
Abstract:
Embodiments are directed to fuel injectors for internal combustion engines (e.g. engines with reciprocating pistons and with compression-ignition or spark-ignition, Wankel engines, turbines, jets, rockets, and the like) and more particularly to improved nozzle configurations for use as part of such fuel injectors. Other embodiments are directed to enabling fabrication technology that can provide for formation of nozzles with complex configurations and particularly for technologies that form structures via multiple layers of selectively deposited material or in combination with fabrication from a plurality of layers where critical layers are planarized before attaching additional layers thereto or forming additional layers thereon. Other embodiments are directed to methods and apparatus for integrating such nozzles with injector bodies.
Abstract:
A counterfeiting deterrent device according to one implementation of the disclosure includes a plurality of layers formed by an additive process. Each of the layers may have a thickness of less than 100 microns. At least one of the layers has a series of indentations formed in an outer edge of the layer such that the indentations can be observed to verify that the device originated from a predetermined source. According to another implementation, a counterfeiting deterrent device includes at least one raised layer having outer edges in the shape of a logo. A light source is configured and arranged to shine a light through a slit in a substrate layer of the device and past an intermediate layer to light up the outer edge of the raised layer. The layers of the device are formed by an additive process and have a thickness of less than 100 microns each.
Abstract:
A bendable medical device such as for removing tissue from a subject is provided with a distal housing, an outer support tube, an inner drive tube, a coupler and a commutator portion. The coupler and commutator portion serve to axially constrain a distal end of the inner drive tube during bending, and to supply fluid for lubricating, cooling and irrigating the distal end of the device.
Abstract:
A counterfeiting deterrent device according to one implementation of the disclosure includes a plurality of layers formed by an additive process. Each of the layers may have a thickness of less than 100 microns. At least one of the layers has a series of indentations formed in an outer edge of the layer such that the indentations can be observed to verify that the device originated from a predetermined source. According to another implementation, a counterfeiting deterrent device includes at least one raised layer having outer edges in the shape of a logo. A light source is configured and arranged to shine a light through a slit in a substrate layer of the device and past an intermediate layer to light up the outer edge of the raised layer. The layers of the device are formed by an additive process and have a thickness of less than 100 microns each.