Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes

    公开(公告)号:US12196781B2

    公开(公告)日:2025-01-14

    申请号:US17968552

    申请日:2022-10-18

    Abstract: Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined, and planar springs may transition into multiple thinner spring elements along their lengths. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.

    Probes with Planar Unbiased Spring Elements for Electronic Component Contact, Methods for Making Such Probes, and Methods for Using Such Probes

    公开(公告)号:US20240094256A1

    公开(公告)日:2024-03-21

    申请号:US17968552

    申请日:2022-10-18

    CPC classification number: G01R1/07314 G01R1/06722 G01R1/06738 G01R3/00

    Abstract: Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined, and planar springs may transition into multiple thinner spring elements along their lengths. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.

    Buckling beam probe arrays and methods for making such arrays including forming probes with lateral positions matching guide plate hole positions

    公开(公告)号:US11821918B1

    公开(公告)日:2023-11-21

    申请号:US17240962

    申请日:2021-04-26

    CPC classification number: G01R1/06744 G01R1/06761 G01R1/07357

    Abstract: Embodiments are directed to the formation of buckling beam probe arrays having MEMS probes that are engaged with guide plates during formation or after formation of the probes while the probes are held in the array configuration in which they were formed. In other embodiments, probes may be formed in, or laterally aligned with, guide plate through holes. Guide plate engagement may occur by longitudinally locating guide plates on probes that are partially formed or fully formed with exposed ends, by forming probes within guide plate through holes, by forming guide plates around probes, or forming guide plates in lateral alignment with arrayed probes and then longitudinally engaging the probes and the through holes of the guide plates. Final arrays may include probes and a substrate to which the probes are bonded along with one or more guide plates while in other embodiments final arrays may include probes held by a plurality of guide plates (e.g. 2, 3, 4 or even more guide plates) with aligned or laterally shifted hole patterns.

Patent Agency Ranking