Abstract:
A measurement transmission system is provided for being coupled to a handheld measuring device (e.g., a caliper, micrometer, etc.) for wirelessly transmitting measurement data to a remote system (e.g., a personal computer). An energy generation portion may be included that converts work done by a user (e.g., operating a button, slide, lever, etc.) into electrical energy for powering the wireless transmission. A data hold actuator may additionally or alternatively be included for freezing a set of measurement data to be used for subsequent wireless transmission (e.g., to preserve the accuracy of the measurement in case the caliper jaws are accidentally moved). In response to receiving the measurement data, the remote system may send a successful transmission signal back to the measurement transmission system (e.g., which may be used to trigger transmission cycle termination operations, data holding release operations, providing a notification to a user confirming the successful transmission, etc.).
Abstract:
An electrically powered caliper is provided which includes a scale member, a slider, a displacement sensor, a force sensing arrangement and a signal processing portion. The signal processing portion is configured to receive a force signal and indicate a respective force corresponding to the respective position of the slider. Force data is acquired comprising a plurality of respective forces corresponding to respective positions of the slider. The signal processing portion defines an acceptable measurement force range defined by at least a minimum force threshold that is determined such that it exceeds a compensation force corresponding to at least one force component included in the force signal that is independent of user variations of the measurement force. It may analyze acquired force data to identify pre-contact data, and set the minimum force threshold for a current measurement procedure based on that pre-contact data.
Abstract:
An end tool metrology position coordinates determination system is provided for use with a robot. A first accuracy level defined as a robot accuracy (e.g., for controlling and sensing an end tool position of an end tool that is mounted proximate to a distal end of a movable arm configuration of the robot) is based on using position sensors (e.g., encoders) included in the robot. The system includes the end tool, an imaging configuration, XY scale, image triggering portion and processing portion. One of the XY scale or imaging configuration is coupled to the end tool and the other is coupled to a stationary element (e.g., a frame located above the robot). The imaging configuration acquires an image of the XY scale, which is utilized to determine a relative position that is indicative of the end tool position, with an accuracy level that is better than the robot accuracy.
Abstract:
A first position measurement device (“FPMD”) is configured to control and operate both standalone and combined device operating modes. During the combined device operating mode, the FPMD inputs second-device measurement sample outputs provided by a second position measurement device (“SPMD”) via an inter-device communication connection. The FPMD and the SPMD are held in a fixed relationship in a workpiece measurement arrangement (e.g., with transverse measuring axes). Concurrent measurement data sets are determined as including at least a first-device measurement sample output from the FPMD and a second-device measurement sample output from the SPMD corresponding to concurrent first-device and second-device sample periods. Each concurrent measurement data set is associated with a corresponding measurement sample region on the workpiece. A combined measurement data output (e.g., as output and/or displayed by the FPMD) is provided for the current measurement sample region on the workpiece based on the corresponding concurrent measurement data set.
Abstract:
An absolute electromagnetic position encoder comprises a readhead and an absolute scale. The readhead comprises field generation and detection configuration and a readhead processor. The absolute scale comprises an active periodic signal pattern, an active absolute signal pattern, and timing and activation circuitry connected to the active signal pattern. During an energy transfer cycle, the timing and activation circuitry is configured to receive and store energy from the readhead. During a first signal generating cycle, the timing and activation circuitry is configured to drive the periodic spatially modulated signal generating element in order to generate first cycle spatially periodic signals in the first cycle field detector. During a second signal generating cycle, the timing and activation circuitry is configured to drive the first spatially modulated signal generating element in order to provide at least one corresponding second cycle signal in the readhead. The readhead processor is configured to determine an absolute position of the readhead relative to the absolute scale based on at least the second cycle signal and the first cycle spatially periodic signals.
Abstract:
An absolute scale configuration is provided for use in a position encoder which includes a readhead and a scale. The absolute scale configuration includes a plurality of scale loops distributed along a measuring axis to provide a position dependent signal that varies depending on a relative position between the scale loops and the readhead. At least some of the scale loops are coupled to respective impedance modulating circuits connected to receive energy from current induced in the scale loop and to provide a unique coded modulation of the scale loop impedance during a code signal generating state. The unique coded modulations as sensed by the readhead are indicative of a coarse resolution absolute position, which may be utilized in combination with the position dependent signal to determine an absolute position with a high resolution.
Abstract:
An electronic caliper generates power for measurement operations. The caliper comprises a scale member, a slider, a signal processing portion configured to measure a displacement between the scale member and slider, a power generating arrangement attached to the slider comprising a gear assembly configured to rotate in response to a force provided through the scale member to the gear assembly by a user opening or closing the caliper, and a power generator coupled to the gear assembly and configured to rotate in response to force provided by the rotating gear assembly and provide power to the signal processing portion. The power generating arrangement generates power as the user opens or closes the caliper and is configured such that it contributes a motion resistance force component of at most 20N during the user opening or closing the caliper using a maximum manual acceleration and/or speed.
Abstract:
An electrically powered caliper is provided which includes a scale member, a slider, a displacement sensor, a force sensing arrangement and a signal processing portion. The signal processing portion is configured to receive a force signal and indicate a respective force corresponding to the respective position of the slider. Force data is acquired comprising a plurality of respective forces corresponding to respective positions of the slider. The signal processing portion defines an acceptable measurement force range defined by at least a minimum force threshold that is determined such that it exceeds a compensation force corresponding to at least one force component included in the force signal that is independent of user variations of the measurement force. It may analyze acquired force data to identify pre-contact data, and set the minimum force threshold for a current measurement procedure based on that pre-contact data.
Abstract:
A metrology system is provided for use with a movement system that moves an end tool (e.g., a probe). The metrology system includes a sensor configuration, a light beam source configuration and a processing portion. The sensor configuration comprises a plurality of light beam sensors. The light beam source configuration directs light beams to the light beam sensors of the sensor configuration. One of the light beam source configuration or the sensor configuration is coupled to the end tool and/or an end tool mounting configuration of the movement system which moves the end tool. The light beams that are directed to the light beam sensors cause the light beam sensors to produce corresponding measurement signals. A processing portion processes the measurement signals from the light beam sensors which indicate the position and orientation of the end tool.
Abstract:
A supplementary metrology position determination system is provided for use with a robot. The robot includes a movable arm configuration and a motion control system configured to control an end tool position with a robot accuracy (i.e., based on sensors included in the robot). The supplementary system includes cameras and 2D scales, each of which is attached to the movable arm configuration (e.g., as attached on arm portions and/or rotary joints). The cameras are operated to acquire images for determining relative positions of the scales. The scales may be coupled to rotary joints (e.g., as may be utilized to determine rotary motion as well as any motion transverse to a rotary axis), and/or to arm portions (e.g., as may be utilized to determine any bending or twisting of the arm portions). Such information may be utilized to achieve higher accuracy (e.g., for measurement operations and/or control of the robot, etc.).