摘要:
A cooling arrangement (56) having: a duct (30) configured to receive hot gases (16) from a combustor; and a flow sleeve (50) surrounding the duct and defining a cooling plenum (52) there between, wherein the flow sleeve is configured to form impingement cooling jets (70) emanating from dimples (82) in the flow sleeve effective to predominately cool the duct in an impingement cooling zone (60), and wherein the flow sleeve defines a convection cooling zone (64) effective to cool the duct solely via a cross-flow (76), the cross-flow comprising cooling fluid (72) exhausting from the impingement cooling zone. In the impingement cooling zone an undimpled portion (84) of the flow sleeve tapers away from the duct as the undimpled portion nears the convection cooling zone. The flow sleeve is configured to effect a greater velocity of the cross-flow in the convection cooling zone than in the impingement cooling zone.
摘要:
A system for cooling a wall (24) of a component having an outer surface with raised ribs (12) defining a structural pocket (10), including: an inner wall (26) within the structural pocket and separating the wall outer surface within the pocket into a first region (28) outside of the inner wall and a second region (40) enclosed by the inner wall; a plate (14) disposed atop the raised ribs and enclosing the structural pocket, the plate having a plate impingement hole (16) to direct cooling air onto an impingement cooled area (38) of the first region; a cap having a skirt (50) in contact with the inner wall, the cap having a cap impingement hole (20) configured to direct the cooling air onto an impingement cooled area (44) of the second region, and; a film cooling hole (22) formed through the wall in the second region.
摘要:
A method of forming and/or assembling a multi-panel outer wall (14) for a component (12) in a machine subjected to high thermal stresses comprising providing such a component (12) that includes an inner panel wall (16) having an outer surface, and an array of interconnecting ribs (38) on the outer surface of the component (12). An intermediate panel (22) is provided and preferably preformed to a general outer contour of the component (12), and is positioned over the inner panel (16). An external pressure force is applied across a surface area of the intermediate panel (22) against the outer surface of the component (12) to contour the intermediate panel (22) according to a geometric configuration formed by the ribs (38) thereby forming cooling chambers (24) between the outer surface and ribs (38) of the component (12) and the intermediate panel (22).
摘要:
A method of forming an internal combustion engine component having a multi-panel outer wall. The multi-panel outer wall has an inner panel (16) with an inner surface (18) and an outer surface (37). The inner panel outer surface (37) has discrete pockets (23) formed by integral structural ribs (38). Each pocket (23) has a film cooling hole (31) between the pocket (23) and the plenum (20). The method includes: forming dimples (40) in the intermediate panel (22), at least one dimple (40) having a nozzle (29); securing the intermediate panel (22) to the inner panel outer surface (37), thereby enclosing at least one pocket (23); and ensuring a respective dimple (40) having a nozzle (29) protrudes into a respective enclosed pocket (24) and a respective nozzle (29) is configured to direct a respective jet (35) of cooling fluid onto the inner panel outer surface within the respective enclosed pocket (23).
摘要:
A cooling arrangement in a gas turbine system (120). The arrangement includes a plurality of flow network units (208) to transfer heat to cooling fluid, at least one unit including first (218), second (220), and third (222) flow sections between openings (64a) in a first wall (66) and an opening in a second wall (68) to pass cooling fluid through the walls. The first section includes first flow paths, between the openings in the first wall and the second section, extending to the second section. The third section includes third flow paths, between the second section and the opening in the second wall, to effect flow of cooling fluid. The second section includes one or more cooling fluid flow paths between the first section and the third section. The number of flow paths in the second section is fewer than the number of first flow paths and fewer than the number of third flow paths.
摘要:
A turbine vane assembly includes an airfoil extending between an inner shroud and an outer shroud. The airfoil can include a substructure having an outer peripheral surface. At least a portion of the outer peripheral surface is covered by an external skin. The external skin can be made of a high temperature capable material, such as oxide dispersion strengthened alloys, intermetallic alloys, ceramic matrix composites or refractory alloys. The external skin can be formed, and the airfoil can be subsequently bi-cast around or onto the skin. The skin and the substructure can be attached by a plurality of attachment members extending between the skin and the substructure. The skin can be spaced from the outer peripheral surface of the substructure such that a cavity is formed therebetween. Coolant can be supplied to the cavity. Skins can also be applied to the gas path faces of the inner and outer shrouds.
摘要:
A cooling system for a transition duct for routing a gas flow from a combustor to the first stage of a turbine section in a combustion turbine engine is disclosed. The transition duct may have a multi-panel outer wall formed from an inner panel having an inner surface that defines at least a portion of a hot gas path plenum and an intermediate panel positioned radially outward from the inner panel such that at least one cooling chamber is formed between the inner and intermediate panels. The transition duct may also include an outer panel. The inner, intermediate and outer panels may include one or more metering holes for passing cooling fluids between cooling chambers for cooling the panels. The intermediate and outer panels may be secured with an attachment system coupling the panels to the inner panel such that the intermediate and outer panels may move in-plane.
摘要:
A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a compliant structure. The compliant structure may be configured such that the outer layer may thermally expand without limitation by the inner layer. The compliant structure may be formed from a plurality of pedestals positioned generally parallel with each other. The pedestals may include a first foot attached to a first end of the pedestal and extending in a first direction aligned with the outer layer, and may include a second foot attached to a second end of the pedestal and extending in a second direction aligned with the inner layer.
摘要:
An airfoil (101) is provided which includes a suction side and a pressure side joined along a trailing edge (106), wherein a trailing edge portion of the airfoil is configured to take a wavelike form along a radial direction of the airfoil, thereby improving the radial bending strength of the airfoil and reducing the magnitude of fluid flow wakes (128′) formed in a working fluid flowing over the airfoil.
摘要:
A ceramic matrix composite (CMC) structure 12 includes a plurality of layers (e.g., 16, 18, 20) of ceramic fibers. The CMC structure 12 further includes a plurality of spaced apart objects 22 on at least some of the plurality of layers along a thickness of the composite structure. The inclusion of the objects introduces an out-of-plane fiber displacement arranged to increase an interlaminar shear strength of the structure.