Abstract:
A carbon fiber reinforced carbon of the present invention is composed of a sintered body comprising precursor carbonaceous fiber and self-sintering carbonaceous powder with the precursor carbonaceous fiber buried therein. Since the precursor carbonaceous fiber working as a reinforcement and the self-sintering carbonaceous powder working as a binder come to have substantially the same physical properties (strength, shrinkage rate and the like), the boudary adhesion between them improves, thereby giving the sintered body high strength and excellent abrasion resistance. When the precursor carbonaceous fiber is subjected to a surface treatment using a viscous material, the wettability of the surface of the precursor carbonaceous fiber increases, thereby further improving the boundary adhesion between the precursor carbonaceous fiber and the self-sintering precursor carbonaceous powder.
Abstract:
Disclosed is a sliding member having a predetermined shape and including: a sintered body obtained by sintering a composite body including: preliminary carbonized carbonaceous fiber; inorganic powder or inorganic fiber; and self-sintering carbonaceous powder with the preliminarily carbonized carbonaceous fiber and the inorganic powder or the inorganic fiber buried therein. The sliding member has a high and stable friction coefficient (.mu.), high strength, excellent abrasion resistance, and is manufacturable at a low cost. Further, the friction coefficient (.mu.) and the other properties of the sliding member can be controlled depending on an application of a sliding member by selecting an optimum inorganic powder or inorganic fiber. Particularly, when boron compound powder is selected as the inorganic powder, the friction coefficient (.mu.) of the sliding member can be suppressed to 0.15 or less, and the load at seizure thereof can be improved to 100 kgf/cm.sup.2 or more.
Abstract translation:公开了一种具有预定形状的滑动构件,包括:通过烧结复合体而获得的烧结体,所述复合体包括:初步碳化碳质纤维; 无机粉末或无机纤维; 和预先碳化的碳质纤维和无机粉末或其中埋入的无机纤维的自烧碳质粉末。 滑动构件具有高且稳定的摩擦系数(μ),高强度,优异的耐磨性,并且可以低成本制造。 此外,可以通过选择最佳无机粉末或无机纤维,根据滑动构件的应用来控制滑动构件的摩擦系数(μ)和其它性质。 特别地,当选择硼化合物粉末作为无机粉末时,可以将滑动部件的摩擦系数(μ)抑制在0.15以下,并且将其挟持时的负荷提高到100kgf / cm 2以上。
Abstract:
A color filter having two-layered light-shielding sections without a black matrix is provided, which reduces the level difference from the colored materials for pixels with a simple method and makes it possible to remove the color layer on the said sections. A red color layer having stripe-shaped red pixel formation sections and a blue color layer having stripe-shaped blue pixel formation sections are overlapped to form two-layered light-shielding sections. A green color layer having island-shaped green pixel formation sections is overlapped with the red and blue color layers, placing the green pixel formation sections in the overlapped green pixel windows of the red and blue color layers. Only the peripheries of the green pixel formation sections are placed on the light-shielding sections to facilitate the removal of the peripheries by polishing.
Abstract:
The liquid crystal display device includes a first substrate, a second substrate arranged in facing relation to the first substrate, and a liquid crystal layer sandwiched between the first and second substrates. The first substrate includes a thin film transistor, a pixel electrode associated with a pixel, a common electrode to which a reference voltage is applied, a data line, a scanning line, and a common electrode line. The second substrate is designed to include no electrodes thereon. The first substrate includes an electric-field shielding layer for preventing an electric field from leaking into pixels in which images are to be displayed, from the scanning line, the electric-field shielding layer being comprised of an electrically conductive layer and being formed in a layer located closer to the liquid crystal layer than an area in which the scanning line is arranged.
Abstract:
In a liquid crystal display device comprising a first substrate 101 having a color filter, a second substrate 131 and a liquid crystal layer disposed therebetween, a color filter layer 110 is disposed on a protection film 108 of a thin film transistor formed on the first substrate 101 so as to be partitioned by a light shielding portion 111, and a common electrode 103 is disposed thereon. A pixel electrode to be connected to a source electrode 107 is disposed through a through hole formed in an overcoat layer (interlayer separation film) 112. On the first substrate below the color filter layer 110 are provided plural scan signal electrodes, plural video signal electrodes crossing the scan signal electrodes in a matrix form, plural thin film transistors formed in association with the crossing points between the electrodes. Each pixel is provided with a common electrode 103 which is connected over plural pixels through a common electrode wire to supply reference potential, and a pixel electrode 114 which is connected to the corresponding thin film transistor and disposed so as to confront the common electrode in the pixel area.
Abstract:
Lattice-shaped pixel electrodes and lattice-shaped common electrodes are provided on a substrate in which switching elements of a horizontal electric-field liquid crystal display device such as a TFT are formed. Each pixel electrode is integrally formed with one electrode of the switching element such as the TFT. Each pixel electrode has a notch at an external periphery of a horizontal bar of the lattice-shaped pixel electrode. A contact hole connecting the common signal wiring and the common electrode in the substrate is provided in an area of the notch of the pixel electrode.
Abstract:
An alignment mark is provided on the surface of a transparent substrate in a CF substrate. An L-shaped pattern whose height is greater than that of the alignment mark is provided in a position that is at a distance upstream in the rubbing direction as viewed from the alignment mark. The trapping pattern is formed by the layering of a lower layer BM and an upper layer B. The lower layer BM of the alignment mark and the trapping pattern is formed from the same material and in the same step as the black matrix. The upper layer B of the trapping pattern is formed from the same material and in the same step as the blue color filter. Debris from the alignment layer can thereby be prevented from accumulating in the region adjacent to the alignment mark when a rubbing treatment is performed on the alignment layer.
Abstract:
In an active matrix type liquid crystal display device comprising a TFT having gate lines and data lines formed in a matrix manner and being connected to a source line, a contact hole for connecting the source line with a pixel electrode is formed in a position overlapping a disclination line. The contact hole is formed in a position overlapping a capacitance portion of the gate line. The gate line and the source line are provided to oppose to each other, and electrostatic capacitance is stored therebetween.
Abstract:
The liquid crystal display device includes a first substrate, a second substrate arranged in facing relation to the first substrate, and a liquid crystal layer sandwiched between the first and second substrates. The first substrate includes a thin film transistor, a pixel electrode associated with a pixel, a common electrode to which a reference voltage is applied, a data line, a scanning line, and a common electrode line. The second substrate is designed to include no electrodes thereon. The first substrate includes an electric-field shielding layer for preventing an electric field from leaking into pixels in which images are to be displayed, from the scanning line, the electric-field shielding layer being comprised of an electrically conductive layer and being formed in a layer located closer to the liquid crystal layer than an area in which the scanning line is arranged.
Abstract:
In a liquid crystal panel, a color filter substrate and an array substrate are provided in parallel with each other, and a liquid crystal layer is sealed therebetween. In the color filter substrate, a black matrix made of a resin and color filters are provided on a transparent substrate. In the array substrate, a pixel circuit is provided on a transparent substrate. The pixel circuit includes a gate interconnection, a gate insulating film, a semiconductor region, a drain interconnection, a passivation film, a pixel electrode, and the like. The sum of the step heights on the surfaces of the color filter substrate and the array substrate both facing the liquid crystal layer is 0.83 μm, and the pre-tilt angle of the liquid crystal layer is set to 4 degrees or more.