DETERMINING SEARCH RESULTS FOR AN ONLINE SHOPPING CONCIERGE PLATFORM

    公开(公告)号:US20240177212A1

    公开(公告)日:2024-05-30

    申请号:US18072353

    申请日:2022-11-30

    IPC分类号: G06Q30/0601

    CPC分类号: G06Q30/0631

    摘要: To determine search results for an online shopping concierge platform, the platform may receive, from a computing device associated with a customer of an online shopping concierge platform, data describing one or more search parameters input by the customer; identify, based at least in part on the data describing the search parameter(s), products offered by the online shopping concierge platform that are at least in part responsive to the search parameter(s); and determine, for each product and based at least in part on one or more machine learning (ML) models, a relevance of the product to one or more taxonomy levels of a product catalog associated with the online shopping concierge platform, a likelihood that the customer would be offended by inclusion of the product amongst displayed responsive search results, and/or the like.

    Search Relevance Model Using Self-Adversarial Negative Sampling

    公开(公告)号:US20230252549A1

    公开(公告)日:2023-08-10

    申请号:US18107854

    申请日:2023-02-09

    IPC分类号: G06Q30/0601 G06Q30/0201

    CPC分类号: G06Q30/0631 G06Q30/0201

    摘要: To train an embedding-based model to determine relevance between items and queries, an online system generates training data from previously received queries and interactions with results for the queries. The training data includes positive training examples including a query and an item with which a user performed a specific interaction after providing the query. To generate negative training examples for the query to include in the training data, the online system determines measures of similarity between items with which the specific interaction was not performed and the query. The online system may weight a loss function for the embedding-based model by the measure of similarity for a negative example, increasing the effect of a negative example including a query and an item with a larger measure of similarity. In other embodiments, the online system selects negative training examples based on the measures of similarities between items and queries in pairs.

    MACHINE LEARNED MODELS FOR SEARCH AND RECOMMENDATIONS

    公开(公告)号:US20240241897A1

    公开(公告)日:2024-07-18

    申请号:US18415551

    申请日:2024-01-17

    申请人: Maplebear Inc.

    摘要: A system may generate a prompt based in part on a search query from a customer client device. The prompt instructs a machine learned model to provide item predictions. And the model was trained by: converting structured data describing items of an online catalog to annotated text data (unstructured data), generating training examples based in part on the annotated text data, and training the model using the training examples. The system may receive item predictions generated by the prompt being applied to the machine learned model, the item predictions may have corresponding item identifiers. The item predictions are processed to identify a recommended item from the item predictions. The processing includes determining item information for the recommended item using an item identifier associated with the recommended item. The item information is provided to the customer client device.