摘要:
The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
摘要:
The present disclosure relates to an interface for a noninvasive glucose sensor that comprises a front-end adapted to receive an input signals from optical detectors and provide corresponding digital signals. In one embodiment, the front-end comprises switched capacitor circuits that are capable of handling multiple streams signals from the optical detectors. In another embodiment, the front-end comprises transimpedance amplifiers that are capable of handling multiple streams of input signals. In this embodiment, the transimpedance amplifier may be configured based on its own characteristics, such as its impedance, the impedance of the photodiodes to which it is coupled, and the number of photodiodes to which it is coupled.
摘要:
The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
摘要:
The present disclosure relates to a sensor having a set of photodetectors that are arranged at various locations to enable the measurement of blood glucose. The photodetectors are arranged across multiple locations. For example, the detector may comprise multiple photodetector arrays that are arranged to have a sufficient difference in mean path length to allow for noise cancellation and noise reduction. Walls may be used in the detector to separate individual photodetectors and prevent mixing of detected optical radiation between the different locations on the measurement site. A window may also be employed to facilitate the passing of optical radiation at various wavelengths for measuring glucose in the tissue.
摘要:
The present disclosure relates to a sensor having a set of photodetectors that are arranged at various locations to enable the measurement of blood glucose. The photodetectors are arranged across multiple locations. For example, the detector may comprise multiple photodetector arrays that are arranged to have a sufficient difference in mean path length to allow for noise cancellation and noise reduction. Walls may be used in the detector to separate individual photodetectors and prevent mixing of detected optical radiation between the different locations on the measurement site. A window may also be employed to facilitate the passing of optical radiation at various wavelengths for measuring glucose in the tissue.
摘要:
The present disclosure relates to an emitter that is suitable for a noninvasive blood constituent sensor. The emitter is configured as a point optical source that comprises a plurality of LEDs that emit a sequence of pulses of optical radiation across a spectrum of wavelengths. In some embodiments, the plurality of sets of optical sources may each comprise at least one top-emitting LED and at least one super luminescent LED. In some embodiments, the emitter comprises optical sources that transmit optical radiation in the infrared or near-infrared wavelengths suitable for detecting glucose. In order to achieve the desired SNR for detecting analytes like glucose, the emitter may be driven using a progression from low power to higher power. In addition, the emitter may have its duty cycle modified to achieve a desired SNR.
摘要:
The present disclosure relates to an interface for a noninvasive glucose sensor that comprises a front-end adapted to receive an input signals from optical detectors and provide corresponding digital signals. In one embodiment, the front-end comprises switched capacitor circuits that are capable of handling multiple streams signals from the optical detectors. In another embodiment, the front-end comprises transimpedance amplifiers that are capable of handling multiple streams of input signals. In this embodiment, the transimpedance amplifier may be configured based on its own characteristics, such as its impedance, the impedance of the photodiodes to which it is coupled, and the number of photodiodes to which it is coupled.
摘要:
The present disclosure relates to a sensor having a set of photodetectors that are arranged at various locations to enable the measurement of blood glucose. The photodetectors are arranged across multiple locations. For example, the detector may comprise multiple photodetector arrays that are arranged to have a sufficient difference in mean path length to allow for noise cancellation and noise reduction. Walls may be used in the detector to separate individual photodetectors and prevent mixing of detected optical radiation between the different locations on the measurement site. A window may also be employed to facilitate the passing of optical radiation at various wavelengths for measuring glucose in the tissue.
摘要:
A spot check credit system advantageously includes various embodiments for obtaining authorization or payment for each measurement, groups of measurements, times of measurement or the like. In an embodiment, the system utilizes a server that communicates web pages over a computer network. In an embodiment, the system utilizes a digital communication device such as a photocommunicative key.
摘要:
A spot check credit system advantageously includes various embodiments for obtaining authorization or payment for each measurement, groups of measurements, times of measurement or the like. In an embodiment, the system utilizes a server that communicates web pages over a computer network. In an embodiment, the system utilizes a digital communication device such as a photocommunicative key.