Abstract:
A method and apparatus for performing H-ARQ transmission is described herein. Bits received on a first transmission are stored and combined with the bits received on later transmissions thereby increasing the likelihood of a correct decoding on later transmissions. Additionally, a plurality of coding schemes (e.g., Convolutional Codes, Block Turbo Codes, Convolutional Turbo Codes, Low Density Party Check Codes, . . . , etc.) are utilized, with an information element being reserved to signal what form of H-ARQ is being utilized.
Abstract:
Communications sourced by a remote unit (14) that is already within reception range of a base site (10) can nevertheless be further facilitated through allocation of one or more relay resources (15, 16). Such relay resources, properly employed, then serve to effectively increase the quality of service for the facilitated communication. This, in turn, can permit the use of, for example, increased data rates for communications from a relatively low power remote unit.
Abstract:
A method for transmitting control information to a wireless node in a communications system includes mapping, by a communications controller, the control information onto resources associated with a wireless node specific search space, the wireless node specific search space being located in a first data region of a first subframe, the first subframe including a first common search space in addition to the wireless node specific search space. The method also includes generating, by the communications controller, a location indicator identifying a location of the wireless node specific search space. The method further includes transmitting, by the communications controller, the first subframe to the wireless node, and transmitting, by the communications controller, the location indicator to the wireless node.
Abstract:
A method of establishing a direct mobile communications (DMC) link between a first user equipment (UE) and a second UE, where at least one of the first UE and the second UE is communicating on a first cellular link includes requesting that at least one of the first UE and the second UE participate in an evaluation procedure to determine a potential quality of a DMC link proposed between the first UE and the second UE. The method also includes receiving a report from at least one of the first UE and the second UE indicating the potential quality of the DMC link proposed between the first UE and the second UE according to the evaluation procedure. The method further includes establishing the DMC link between the first UE and the second UE if the potential quality of the DMC link exceeds a predetermined threshold.
Abstract:
A method for operating a user equipment (UE) in a UE group including at least two UEs includes receiving, from a communications controller, network resources information about an allocation of a first set of network resources to the UE group and a transmission indication, where the transmission indication indicates that the UE is selected to transmit in a second set of network resources that is a subset of the first set of network resources. The method further includes transmitting, to other UEs in the UE group utilizing a direct mobile communications (DMC) link associated with the communications controller, a first message including a control indicator in a first subset of the second set of network resources, the control indicator indicating scheduling information for a second subset of the second set of network resources.
Abstract:
A base station (e.g., an evolved Node B) determines whether the physical broadcast channel (PBCH), reference signals (SCH) and common reference signals (CRS) are transmitted (or awaiting transmission) on a secondary component carrier (Scell) with the cell. The determination information is transmitted to a user equipment (UE) to inform the UE that the Scell transmissions do not include PBCH/SCH/CRS. As a result, the resource elements (REs) normally used to carry system information in the PBCH/SCH/CRS can be dynamically assigned (or reassigned) to the data channel. In this manner, the physical downlink shared channel (PBSCH) bandwidth can be increased by utilizing those resource elements that are normally reserved/assigned to the PBCH/SCH/CRS.
Abstract:
A system and method for adapting code rate are provided. A method for a first communication device to transmit a resource assignment to at least one communication device includes assigning at least one transmission resource to transmit the resource assignment, adapting a code rate of an encoded payload based on the at least one transmission resource and a threshold, thereby producing an adapted payload, and transmitting the adapted payload.
Abstract:
A resource allocation method, a network device and a wireless system are disclosed. The method includes: sorting Resource Blocks (RBs) used by a terminal of a first system and a terminal of a second system according to a use situation of the RBs used by the terminal of the first system and the terminal of the second system; and allocating the sorted RBs. When some RBs are available to a Long Term Evolution (LTE) terminal, coexistence of an LTE-Advanced (LTE-A) terminal and the LTE terminal is enabled, and compatibility between the LTE-A terminal and the LTE terminal is ensured.
Abstract:
A system and method for assigning backhaul resources is provided. A method for wireless relay network communications includes determining performance information regarding a plurality of relay nodes, allocating resource blocks in a subframe to relay nodes based on the information, and notifying relay nodes of the allocated RBs using a signaling message.
Abstract:
A communication system and a method of communicating backhaul data. The communication system can include a controller. The controller can dynamically select from a plurality of backhaul sites at least a first backhaul site to establish a backhaul communication link with an access point. The controller also can generate a control signal that indicates to the access point to beam steer a backhaul signal to the first backhaul site. The access point can include a phased array that dynamically beam steers the backhaul signal in azimuth and elevation.