Abstract:
A heat pump for cooling or heating a conditioned space includes an underground heat pipe laid into a hole in the ground back-filled with soil. The heat transfer of the soil is improved by dispersing highly water-absorbent hydrophilic polymeric gel particles soaked with water around the heat pipe. The water-soaked particles preferably are coated with a water-impermeable film. The water may also be entrapped in liquid form in small bags. Also, a water impermeable sheath may be formed around the back-fill soil to minimize evaporation from the particles.This is a division of application Ser. No. 718,348 filed Aug. 27, 1976, now U.S. Pat. No. 4,042,012.
Abstract:
A system having one or more tubular conductors disposed within shield means containing a dielectric surrounding the conductors is used to transmit electrical power. Liquid coolant is directed along a supply line from a source and into the conductors. Each conductor has a plurality of tubular insulators at spaced locations along its length to remove coolant vapor from within the conductor to maintain single phase flow while at the same time operating under two-phase cooling. Another line receives the vapor and returns it to the source of liquification. Several embodiments of the system are disclosed.
Abstract:
This invention deals with novel method and apparatus for positioning and motion control of the elements (lenses) of a Fresnel lens solar concentrator tracking array by induced and/or permanent dipole coupling to an electronic grid to produce angular deflection, and rotational motion. Thus forces and torques are produced without the use of internal moving parts. Control can be achieved without recourse to magnetic fields, by means of high electric fields which may be attained at relatively low voltages. At low voltages, the instant invention exceeds the capability of conventional systems. It can perform dynamic motion control with independent amplitude and frequency modulation. It is ideally suited for maximization of solar energy focused by the array onto a receiver. Since there are no mechanical likages, the instant invention is the most adapted for fabrication from the mini- to the micro-technology realm. Furthermore it provides less costly and greater ease of manufacture from the mini-to the micro-realm.
Abstract:
A novel latch for pivoted optical elements of a solar concentrator and other equipment latches them in position between orientation operations. The mirrors may be on a universal pivot that can rotate or tilt in any direction; or on gimbal pivots. The orientation power can be turned off between alignments with the mirrors remaining in alignment orientation during this off-power period. Turning off the alignment power between alignments, saves on both energy resources and on expensive apparatus. It permits a great reduction in power supply as the optical elements can be aligned sequentially. This not only reduces operating costs, but also capital investment because smaller power supplies can suffice. A preferred embodiment utilizes the freezing of a liquid material. Since this involves no moving parts for latching, the instant invention is ideally adapted for fabrication from the nano- to the mini-realm.
Abstract:
This invention deals with novel method and apparatus for positioning and motion control of the elements (mirrors) of a Fresnel reflector solar concentrator tracking heliostat array by induced and/or permanent dipole coupling to an electronic grid to produce angular deflection, and rotational motion. Thus forces and torques are produced without the use of internal moving parts. Control is achieved without recourse to magnetic fields, by means of high electric fields which may be attained at relatively low voltages. At low voltages, the instant invention exceeds the capability of conventional systems. It can perform dynamic motion control with independent amplitude and frequency modulation. It is ideally suited for maximization of solar energy focused by the array onto a receiver. Since there are no internal moving parts, the instant invention is the most adapted for fabrication from the mini- to the microtechnology realm. Furthermore it provides less costly and greater ease of manufacture from the mini- to the micro-realm.
Abstract:
Method and apparatus are presented for mass production manufacturing of micro-mirrored balls for solar energy and related applications such as optical switches, etc. For these applications it is imperative to provide accurate specular reflection from the mirror. The mass production process utilizes laminate sheets containing reflective material, assembly rollers, and extrusion and die rollers. The micro-mirrored balls are in the size range of 4 microns (4×10−6 m) to 1 mm (10−3 m), and in one form are transparent in at least one hemisphere with a reflecting mid-plane mirror. In other forms the micro-balls vary in geometry from cylinders to oblate ellipsoids to disks. The term “elements” is used to encompass all these shapes, which have one thing in common—a flat specularly reflecting mirrored surface. These elements can track the light source, and aim and focus the reflected light.
Abstract:
This invention deals with novel method and apparatus for positioning and motion control of the elements (mirrors) of a Fresnel reflector solar concentrator tracking heliostat array wherein the elements are suspended with the center of mass below the swivel point, or have an internal-swivel. This achieves an advantageous natural vertical stability. The torque to produce angular deflection, and rotational motion is provided separately by an electric wind force due to electrons, ions, and/or neutrals; or in combination with an induced and/or permanent dipole coupling to an electronic grid. Thus forces and torques are produced without the use of internal moving parts such as in motors. The instant invention exceeds the capability of conventional systems. It is ideally suited for maximization of solar energy focused by a low-profile concentrator array onto a receiver. Since there are no internal moving parts, the instant invention provides less costly and greater ease of manufacture. Dynamic motion can be controlled over a wide range of dimensions from nanometers to decimeters.
Abstract:
This invention provides a better means to achieve affordable solar energy, as well as other technologies. It does so by improving control grids (for addressing and alignment) in solar concentrators and optical equipment in general. Thus troublesome and expensive grid material like Indium Tin Oxide (ITO) can be replaced by more manageable, hardier, and in the long run relatively less expensive nanotubes; or a carbon grid simply laid down by ordinary photocopy (Xerographic) reduction techniques. The instant invention relates to improvements in the control (addressing and alignment) grid for Solar Energy Concentrators; and similar equipment such as Optical Switches [e.g. cf. M. Rabinowitz U.S. Pat. No. 6,976,445]; and Display devices such as Dynamic Reflection, Illumination, and Projection equipment [e.g. cf. M. Rabinowitz U.S. Pat. No. 7,130,102]; as well as display equipment in general. The control grid acts to address and align active optical elements such as mirrored balls, multipainted balls, electrophoretic, and magnetophoretic cells in solar concentrators [e.g. cf. M. Rabinowitz U.S. Pat. Nos. 7,133,183 and 6,843,573]; and in other equipment. Methods of fabricating the grids are also described.
Abstract:
Due to an ever growing shortage of conventional energy sources, there is an increasingly intense interest in harnessing solar energy. The instant invention can contribute to the goal of achieving environmentally clean solar energy to be competitive with conventional energy sources. Method and apparatus are presented for coupling to a transparent sheet with an embedded array of preformed or formable mirrored micro-balls for use in a solar energy concentrator, and functionally similar applications such as optical switches and solar rocket assist. Mirrored micro-balls and particulate formable mirrors in cells are covered with a thin spherical shell of lubricating liquid so that they are free to rotate in an almost frictionless encapsulation in the sheet. Induced polarization electric or magnetic dipoles in the mirrors provide a method of controlling the alignment of the mirrored balls. Electrophoretically and magnetophoretically forming mirrors in situ on a rigid surface in a rotatable cell are also disclosed. Confining the balls and cells in cavities within a single sheet, rather than loosely between two sheets, allows for greater alignment accuracy which is needed for higher concentrations with gains greater than 10×. Immersing balls and cells in a lubricating fluid permits nearly frictionless rotation which reduces the power requirement for rotation, and further enables greater alignment accuracy as the impediment of unnecessary friction need not be overcome.
Abstract:
This invention deals with an improveed general concept for a multi-wavelength switching ensemble which is controlled electrically, electromagetically, or magnetically. A switching system is presented that permits the input to control the output. It allows a full 360 degree rotation of the beam which greatly exceeds the rotational capability of conventional systems. Furthermore, the instant invention permits less costly and greater ease of manufacture.