Abstract:
An audio-on-demand communication system provides real-time playback of audio data transferred via telephone lines or other communication links. One or more audio servers include memory banks which store compressed audio data. At the request of a user at a subscriber PC, an audio server transmits the compressed audio data over the communication link to the subscriber PC. The subscriber PC receives and decompresses the transmitted audio data in less than real-time using only the processing power of the CPU within the subscriber PC. According to one aspect of the present invention, high quality audio data compressed according to lossless compression techniques is transmitted together with normal quality audio data. According to another aspect of the present invention, metadata, or extra data, such as text, captions, still images, etc., is transmitted with audio data and is simultaneously displayed with corresponding audio data.
Abstract:
An audio-on-demand communication system provides real-time playback of audio data transferred via telephone lines or other communication links. One or more audio servers include memory banks which store compressed audio data. At the request of a user at a subscriber PC, an audio server transmits the compressed audio data over the communication link to the subscriber PC. The subscriber PC receives and decompresses the transmitted audio data in less than real-time using only the processing power of the CPU within the subscriber PC. According to one aspect of the present invention, high quality audio data compressed according to lossless compression techniques is transmitted together with normal quality audio data. According to another aspect of the present invention, metadata, or extra data, such as text, captions, still images, etc., is transmitted with audio data and is simultaneously displayed with corresponding audio data. The audio-on-demand system also provides a table of contents indicating significant divisions in the audio clip to be played and allows the user immediate access to audio data at the listed divisions. According to a further aspect of the present invention, servers and subscriber PCs are dynamically allocated based upon geographic location to provide the highest possible quality in the communication link.
Abstract:
A filter device for use in a domestic or office water supply system is provided. The device includes a container having an enclosed cavity, and includes a filter unit disposed in the cavity. The device is a two-stage device having a first radial flow filter subassembly and a second axial flow filter subassembly. The radial flow subassembly includes a radially inner perforated tube, a carbon block cylinder over the tube, prefilter cylinders over the carbon block cylinder, and a screen-like wrap layer over the radially outer second prefilter cylinder. The axial flow subassembly has a plurality of axial filter fiber tubes which have a support header wall. The header wall is mounted in a cup-shaped member. The cup-shaped member has a plurality of outlet passage slots at the closed end thereof and supports the header wall at the other end thereof.
Abstract:
A fluid level indicator is provided. The indicator includes a body having a first end and a second end. The body has a first arm and a second arm extending between the first end and the second end. The first arm and the second arm defining a slot therebetween. The body further including a first plurality of teeth extending from a side of the first arm in the slot. The first plurality of teeth extending on an angle away from the first end toward the second arm. The body still further including a second plurality of teeth, extending on an angle away from the first end toward the first arm. A float member is provided having a first member and a second member with a shaft disposed therebetween. The float member being arranged with the shaft member disposed in the slot.
Abstract:
An audio-on-demand communication system provides real-time playback of audio data transferred via telephone lines or other communication links. One or more audio servers include memory banks which store compressed audio data. At the request of a user at a subscriber PC, an audio server transmits the compressed audio data over the communication link to the subscriber PC. The subscriber PC receives and decompresses the transmitted audio data in less than real-time using only the processing power of the CPU within the subscriber PC. According to one aspect of the present invention, high quality audio data compressed according to lossless compression techniques is transmitted together with normal quality audio data. According to another aspect of the present invention, metadata, or extra data, such as text, captions, still images, etc., is transmitted with audio data and is simultaneously displayed with corresponding audio data. The audio-on-demand system also provides a table of contents indicating significant divisions in the audio clip to be played and allows the user immediate access to audio data at the listed divisions. According to a further aspect of the present invention, servers and subscriber PCs are dynamically allocated based upon geographic location to provide the highest possible quality in the communication link.
Abstract:
An audio-on-demand communication system provides real-time playback of audio data transferred via telephone lines or other communication links. One or more audio servers include memory banks which store compressed audio data. At the request of a user at a subscriber PC, an audio server transmits the compressed audio data over the communication link to the subscriber PC. The subscriber PC receives and decompresses the transmitted audio data in less than real-time using only the processing power of the CPU within the subscriber PC. According to one aspect of the present invention, high quality audio data compressed according to lossless compression techniques is transmitted together with normal quality audio data. According to another aspect of the present invention, metadata, or extra data, such as text, captions, still images, etc., is transmitted with audio data and is simultaneously displayed with corresponding audio data. The audio-on-demand system also provides a table of contents indicating significant divisions in the audio clip to be played and allows the user immediate access to audio data at the listed divisions. According to a further aspect of the present invention, servers and subscriber PCs are dynamically allocated based upon geographic location to provide the highest possible quality in the communication link.
Abstract:
A system establishes a telephone call between a calling party and a called party. The system receives a telephone call connection request, including identification of the called party, from the calling party and determines, based on the identification information, if the called party is currently connected to a data network. If the called party is currently connected to the data network, the system establishes the telephone call between the calling party and an instant messaging client of the called party.
Abstract:
A system establishes a telephone call between a calling party and a called party. The system receives a telephone call connection request, including identification of the called party, from the calling party and determines, based on the identification information, if the called party is currently connected to a data network. If the called party is currently connected to the data network, the system establishes the telephone call between the calling party and an instant messaging client of the called party.
Abstract:
A wireless communication system facilitates communication within subscribing units within a respective service area, supports at least one communication protocol revision. The system communicates with a subscribing unit operating within a respective service area to determine the communication protocol revisions supported by the subscribing unit. Subsequently, the subscribing unit and base station communicate according to a supported communication protocol revision. The base station and subscribing unit may further communicate to indicate extended services supported by the subscribing unit and the methods of delivering the extended services to the subscribing unit. The extended services may include caller line ID, message waiting indications and short message services among other extended services. In addition to a base station, the wireless communication system may include a mobile switching center that is in communication with the base station. The mobile switching center may include a visitor location register that records communication protocol revisions supported by the subscribing unit. In such construction, the visitor location register may also include records that indicate which extended services are supported by the subscribing unit as well as the protocols supported by the subscribing unit for delivery of the extended services. The base station may include a protocol capability indication unit while the subscribing unit may include an identification unit that, together, facilitate determining correct operation. A method of operation allows the base station and subscribing unit to communicate and operate according to common protocol revisions and to correctly deliver extended services to the subscribing unit.
Abstract:
Testing of a semiconductor integrated circuit is conducted by determining all paths leading to a failed location on a chip. Potentially faulty locations are then determined by finding faults which occurred at the same time the failing vector was scanned, and the intersection of the paths and the faulty locations form a smaller set of potentially faulty locations on the IC. Further testing of the nodes which are in this smaller set is performed until a single location or small portion of a chip may be visually inspected with little effort.