Abstract:
Catalyst withdrawal apparatuses and methods for regulating catalyst inventory in one or more units are provided. In one embodiment, a catalyst withdrawal apparatus for removing catalyst from a FCC unit includes a vessel coupled to a flow control circuit. Another embodiment of a catalyst withdrawal apparatus includes a vessel, a delivery line, and control valve. The control valve is configured to control the amount of gas to the delivery line and entrained with the catalyst. Another embodiment of catalyst withdrawal apparatus includes a vessel coupled to a heat exchanger. The heat exchanger includes a first conduit; a housing confining a coolant volume around a portion of the first conduit; and a sliding seal sealing the housing to the first conduit in manner that allows longitudinal expansion. A fluid catalyst cracking system coupled to a catalyst withdrawal apparatus and method for withdrawing catalyst from a unit are also disclosed.
Abstract:
A method for monitoring a FCC catalyst injection system is provided. One embodiment of the invention includes steps for determining an occurrence of a pre-defined event and establishing communication between a control module of the injection system and a remote device in response to the event. In another embodiment of the invention, a method is described which entails the acquisition of data from the injection system by a plurality of sensors. After the data is obtained, it is subsequently stored in the memory device of the control module. Communication is then established between a remote device and the control module to transfer the data.
Abstract:
A mobile fluid cracking catalyst injection system and a method of controlling a fluid catalyst cracking process is provided. In one embodiment, a mobile fluid catalyst cracking system includes a transportable platform, a catalyst reservoir coupled to the platform and a flow control device coupled to an outlet of the reservoir and adapted to control the flow of catalyst from the reservoir to a fluid catalyst cracking unit (FCCU).
Abstract:
A catalyst withdrawal apparatus and method for regulating catalyst inventory in a fluid catalytic cracking catalyst (FCC) unit is provided. In one embodiment, a catalyst withdrawal apparatus for removing catalyst from a FCC unit includes a pressure vessel having a metering device coupled to a fill port. A heat dissipater is located adjacent the metering device and is adapted to cool catalyst entering the pressure vessel. A sensor is coupled to the pressure vessel arranged to provide a metric indicative of catalyst entering the pressure vessel through the metering device. In another embodiment, a method for regulating catalyst inventory in a FCC unit includes the steps of determining a change of catalyst present in a FCC unit, withdrawing catalyst from the FCC unit into an isolatable storage vessel coupled to the FCC unit, measuring the amount of catalyst disposed in the storage vessel, and removing the measured catalyst from the storage vessel.
Abstract:
An addition apparatus, a fluid catalytic cracking (FCC) system having an addition apparatus, and a method for adding material to an FCC unit are provided. In one embodiment, an addition system having the capability of interfacing with a material container is provided that allows the addition system to obtain information relating material held in the container. In one embodiment, at least some of the information is contained on a tag affixed to the container. Other information may be retrieved and/or sent to the addition system controller from a remote data source, such as a catalyst supplier.
Abstract:
An addition apparatus, a fluid catalytic cracking (FCC) system having an addition apparatus, and a method for adding material to an FCC unit are provided. In one embodiment, an addition system for an FCC unit includes a container, a first eductor and a sensor. The eductor is coupled to an outlet of the container. The sensor is configured to detect a metric of material dispensed from the container through the eductor. A valve is provided for controlling the flow through the eductor. A controller provides a control signal for regulating an operational state of the valve. In another embodiment, an FCC system having an addition system is provided. In yet another embodiment, a method for adding material to an FCC unit is provided.
Abstract:
A method and apparatus for metering catalyst in a fluid catalytic cracking catalyst injection system are provided. In one embodiment, apparatus for metering catalyst in a fluid catalytic cracking catalyst injection system includes a low pressure storage vessel coupled to a pressure vessel that defines a high pressure side of the apparatus, where the determination of the amount of catalyst transferred is made on the low pressure side of the apparatus.
Abstract:
The invention is a catalyst injection system and method for injecting catalyst. In one embodiment, a fluid catalytic injection system includes vessel configured to store one or more catalysts, a pressure transmitter, a pressure control valve, a discharge valve, and a controller. The pressure control valve is coupled to the vessel and regulates the gas pressure therein. The discharge valve is coupled to the vessel and controls a discharge of catalyst from the vessel. The pressure transmitter provides a metric of pressure to the controller as an input. The controller contains instructions, that when executed, prevents the simultaneous opening of the pressure control valve and the discharge valve. In another embodiment, a method for injecting catalyst into a fluid catalytic cracking unit is provided. The method includes regulating pressure within a catalyst storage vessel, changing an amount of catalyst in the storage vessel, and preventing a simultaneous occurrence of the regulating and changing steps.
Abstract:
A method for concurrently gathering acoustic and resistivity data for mapping the texture of the sidewall of a borehole using a single imaging tool. The data are sampled, formatted and merged to provide a single composite image of the borehole sidewall.
Abstract:
A device for gauging level of a liquid within a container employing an elongated fibrous optic assembly which is connected at one end to a probe which is mounted within the container and at the other end to an electrical control device, the end of the fibrous optic assembly located within the probe being connected to a reflecting prism which functions to reflect light when not in contact with the liquid and does not reflect light when in contact with liquid, means located within the control device responsive to the reflection of light, said means being connected to an annunciator.