Abstract:
A fluidized reactor system includes a reactor containing a fluidized bed situated above a distributor plate arranged within the reactor, a fluidizing gas fed into the fluidized bed via the distributor plate to cause uniform fluidization of the fluidized bed and promote creation of solid polymeric granules, and a valve assembly penetrating a sidewall of the reactor to remove a mixture of the fluidizing gas and the solid polymeric granules from the fluidized bed. The valve assembly is coupled to the sidewall at a downward angle relative to the sidewall such that an upward-facing opening of the valve assembly extends into the fluidized bed.
Abstract:
The present invention is generally directed to a reactor for the production of low-carbon syngas from captured carbon dioxide and renewable hydrogen. The hydrogen is generated from water using an electrolyzer powered by renewable electricity or from any other method of low-carbon hydrogen production. The improved catalytic reactor is energy efficient and robust when operating at temperatures up to 1800° F. Carbon dioxide conversion efficiencies are greater than 75% with carbon monoxide selectivity of greater than 98%. The catalytic reactor is constructed of materials that are physically and chemically robust up to 1800° F. As a result, these materials are not reactive with the mixture of hydrogen and carbon dioxide or the carbon monoxide and steam products. The reactor materials do not have catalytic activity or modify the physical and chemical composition of the conversion catalyst. Electrical resistive heating elements are integrated into the catalytic bed of the reactor so that the internal temperature decreases by no more than 100° F. from the entrance at any point within the reactor. The catalytic process exhibits a reduction in performance of less than 0.5% per 1000 operational hours.
Abstract:
A solids circulation system receives a gas stream containing char or other reacting solids from a first reactor. The solids circulation system includes a cyclone configured to receive the gas stream from the first reactor, a dipleg from the cyclone to a second reactor, and a riser from the second reactor which merges with the gas stream received by the cyclone. The second reactor has a dense fluid bed and converts the received materials to gaseous products. A conveying fluid transports a portion of the bed media from the second reactor through the riser to mix with the gas stream prior to cyclone entry. The bed media helps manipulate the solids that is received by the cyclone to facilitate flow of solids down the dipleg into the second reactor. The second reactor provides additional residence time, mixing and gas-solid contact for efficient conversion of char or reacting solids.
Abstract:
A preferred embodiment of a system for loading catalyst and/or additives into a fluidized catalytic cracking unit includes a bin for storing at least one of the catalyst and/or additives, and a loading unit in fluid communication with the storage bin and the fluidized catalytic cracking unit on a selective basis. The loading unit is capable of being evacuated so that a resulting vacuum within the loading unit draws the catalyst and/or additive from the bin. The loading unit is also capable of being pressurized so that the catalyst and/or additive is transferred from the loading unit to the fluidized catalytic cracking unit.
Abstract:
A mixing device used in a fluidized catalytic cracking apparatus which mixes feed and a catalyst includes a cylindrical reaction container which supplies a catalyst in a vertical direction; a plurality of feed injection nozzles arranged along an outer circumference of the reaction container; and a catalyst flow regulator which is provided in the reaction container and regulates a flow of the catalyst in the vicinity of the feed injection nozzles. The catalyst flow regulator has no feed supply function and forms a catalyst moving bed having a hollow tubular shape which is coaxial with the reaction container in the vicinity of the feed injection nozzles. The catalyst flow regulator can effectively prevent backward flow of injected fuel. Although the mixing device has a simple structure, it has a high cracking rate and maintenance of the fluidized catalytic cracking apparatus can be performed easier.
Abstract:
The present invention concerns a process for unloading a bed (2) of particulate material from a vessel (1), which comprises inserting a removable and portable extraction pipe (4) into the lower part of said bed, injecting a fluidization gas upwardly into the extraction pipe (4) from the bottom part thereof, along the entire length of the extraction pipe (4), and applying a positive pressure differential between the inlet and the outlet of said extraction pipe.The present invention further concerns a device suitable for implementing such a process.
Abstract:
The invention relates to a device for producing starting materials, combustible substances and fuels from organic substances. Said claimed device comprises a reactor (10) that comprises an introduction device (11) for the organic substances, an evacuation device (12) for the reaction products and a device (13) for feeding reaction energy for the transformation of organic substances into reaction products. The invention is characterised in that the introduction device (11) comprises pneumatic means (24) for the supply of solid material.
Abstract:
An improved spent catalyst regenerator which contains sub-troughs branching off from the main trough, distribution troughs which extend outward from the sides of the main trough and the sub-troughs, and downflow tubes extending downward from the bottom of the main trough and sub-troughs.
Abstract:
An improved spent catalyst regenerator which contains sub-troughs branching off from the main trough, distribution troughs which extend outward from the sides of the main trough and the sub-troughs, and downflow tubes extending downward from the bottom of the main trough and sub-troughs.
Abstract:
Device for distributing a fluid in a controlled manner, in particular for distributing a gas loaded with particles, the device comprising a pipe (1) provided with at least one inlet orifice (2) and with a series of outlet orifices (3) spread along the pipe (1) and cut in the side wall of this pipe, characterized in that at least one section (4) of the wall, located downstream of at least one outlet orifice and limited by a section (5) of the edge of this orifice, has a shape such that this section of the edge of this orifice is positioned inside the pipe so that, when the device is in service, the flow direction of the fluid exiting this orifice and travelling along said wall section is controlled by the shape of the latter section.