摘要:
A method of detecting abnormal operation of a plasma process, includes: (i) detecting a potential Vpp1 between an upper electrode and a lower electrode disposed parallel to each other in a reaction camber at a time T1 after the plasma process begins in the reaction chamber; (ii) detecting a Vpp2 between the upper electrode and the lower electrode at a time T2 after T1; (iii) comparing Vpp1 and Vpp2 to obtain an operation value; and (iv) determining abnormal operation if the operation value is within a predetermined range.
摘要:
Provided is a magnetic resonance imaging apparatus capable of highly precisely detecting and compensating body motions within a short processing time during radial scanning. The magnetic resonance imaging apparatus includes a control unit that applies radiofrequency magnetic fields and magnetic field gradients to a subject lying down in a static magnetic field and that detects magnetic resonance signals generated from the subject, and an arithmetic unit that handles the signals. The arithmetic unit performs subject's body motion detection in an image space, uses an image, which is reconstructed using the low-frequency portion of the k-space data of the image, as criterial data, produces templates by moving the criterial data in advance by predetermined magnitudes of rotations and predetermined magnitudes of translations, and uses the produced templates to perform the body motion detection.
摘要:
In a magnetic resonance imaging apparatus, an RF pulse is applied to a subject placed in a static magnetic field, a plurality of gradient magnetic fields are applied, and induced nuclear magnetic resonance signal (echo signal) is received by means of a RF receiving coil unit composed of two or more RF receiving coils. A parallel MRI method is applied to echo signals acquired by reducing the echoes per blade of a propeller MRI method so as to remove the artifact to produce a reconstructed image. The reconstructed image is subjected to inverse Fourier transform to return it to the echo signals in a measurement space corresponding to the blade. The echo signals are girded in an arbitrarily predetermined coordinate system for image and combined. Such a processing is conducted for the echo signals of all the blades. A final image is reconstructed using the echo signals after the image creation in the coordinate system for image.
摘要:
High-speed imaging by a propeller MRI method is enabled as a whole thanks to high-speed computation by preventing an aliasing artifact even if the echoes acquired by one blade are decreased and by reducing the imaging time and the computational complexity. In a magnetic resonance imaging apparatus, an RF pulse is applied to a subject placed in a static magnetic field, a plurality of gradient magnetic fields are applied, and induced nuclear magnetic resonance signal (echo signal) is received by means of a multiple RF receiving coil unit composed of two or more RF receiving coils. A parallel MRI method is applied to echo signals acquired by reducing the echoes per blade of a propeller MRI method so as to remove the artifact to produce a reconstructed image. The reconstructed image is subjected to inverse Fourier transform to return it to the echo signals in a measurement space corresponding to the blade. The echo signals are girded in an arbitrarily predetermined coordinate system for image and combined. Such a processing is conducted for the echo signals of all the blades. A final image is reconstructed using the echo signals after the image creation in the coordinate system for image.
摘要:
In a multi-shot MR imaging method, a navigator echo V(kx, n) of which phase-encoding amount is 0 is generated by applying a gradient magnetic field pulse in a readout direction (x-direction) and collected at each segment. A phase shift map C(kx, n) of V(kx, n) collected in the n-th segment is produced in k-space as a function in kx-direction with V(kx, 1) collected in the first segment being the reference. Next, noises are removed from C(kx, n), and C(kx, n) is smoothed. Then, an image echo signal S(kx, n, m) collected in the n-th segment is corrected in k-space according to a smoothed phase shift map C′(kx, n) of V(kx, n) collected in the same segment, and an image echo signal S′(kx, n, m) of which phase shifts are corrected is thereby acquired. Thus, the phase shifts of the image echo signals caused by a motion in the x-direction of a patient can be precisely corrected at a high speed. By reconstructing an image with the corrected image echo signal S′(kx, n, m), the image without motion artifacts can be acquired in realtime.
摘要:
A printhead mainly includes at least two ink supply holes on a single semiconductor substrate, a first signal processing circuit laid out at least at one corner of the semiconductor substrate to arbitrarily select a heater for heating the ink, and a second signal processing circuit, other than the first signal processing circuit for arbitrarily selecting a heater, that realizes a function without dividing an arrangement. The lengths of signal lines are minimized to realize a printhead free from any malfunction.
摘要:
A printhead mainly includes at least two ink supply holes on a single semiconductor substrate, a first signal processing circuit laid out at at least one corner of the semiconductor substrate to arbitrarily select a heater for heating the ink, and a second signal processing circuit, other than the first signal processing circuit for arbitrarily selecting a heater, that realizes a function without dividing an arrangement. The lengths of signal lines are minimized to realize a printhead free from any malfunction.
摘要:
In a magnetic resonance imaging method in which after irradiating RF pulses of magnetic resonance frequencies into an object to be inspected, a sequence of detecting echo signals sequentially and a step of reconstructing an image by making use of the obtained echo signals are repeated in parallel, and an animating image is obtained by successively renewing a part of the echo signals used for reconstructing the previous image, a navigator echo is generated for every irradiation of the RF pulses and is detected, a navigator echo which serves as a reference for correcting phases of the echo signals used for the image reconstruction is successively renewed for every image, and the phases of the echo signals are corrected based on the renewed navigator echo for every image obtain the same. Thereby, a reference time for correcting object motion by making use of navigator echoes (3021, 3022) is set short and artifacts due to an object motion is reduced with an accuracy corresponding to a high temporal resolution. Thus, an MRI method which permits reduction of artifacts due to object motions while keeping a high temporal resolution for an MRI of animating images is provided.
摘要:
In a magnetic recording medium having a base, a coating for magnetic recording formed on one side of the base, and a back coating of a nonmagnetic powder dispersed in a binder containing a thermosetting resin and formed on the other side, the back coating contains a fatty acid and/or a fatty ester.
摘要:
In order to obtain a highly reliable image with no image distortion or no artifacts, such as ghosting, by compensating for the distortion of an output gradient magnetic field waveform caused by various factors with high accuracy, an input gradient magnetic field waveform and an output gradient magnetic field waveform corresponding to the input gradient magnetic field waveform are calculated, a response function that is a sum of response functions of a plurality of elements affecting the output gradient magnetic field waveform is calculated using the input gradient magnetic field waveform and the output gradient magnetic field waveform, an output gradient magnetic field waveform is calculated from an input gradient magnetic field waveform of a gradient magnetic field pulse set in the imaging sequence using the response function, and various kinds of correction are performed using the calculated value of the calculated output gradient magnetic field waveform.