Abstract:
A circuit for controlling pulse width of a signal for driving a light emitting element, includes a pulse width control circuit capable of responding to multi-bit rates in the same circuit structure. For this purpose, the pulse width control circuit has a Tr/Tf control section controlling at least one of a rise time Tr and a fall time Tf of an input signal according to the bit rate of the input signal; a waveform shaping section shaping a signal output from the Tr/Tf control section to generate an output signal; and a control signal generating section generating a control signal for controlling an operation of the Tr/Tf control section based on pulse width control information.
Abstract:
The present invention provides a light emitting element driving apparatus having a driving unit for driving a light emitting element by means of a driving signal while performing automatic light power control, which enables a light output to rise at a high speed in the head portion of a burst signal to be first inputted and light outputs of a second burst signal after the first burst signal and signals thereafter to be stably supplied irrespective of holding time. To this end, the light emitting element driving apparatus comprises a reference voltage generation unit for generating a reference voltage from an input electric signal containing data information, the reference voltage being used for obtaining a light output having specified power from the light emitting element in a normal condition, a monitoring voltage generation unit for generating a monitoring voltage signal corresponding to power of an optical signal outputted from the light emitting element, a light power control unit for controlling, based on a result of comparison from the reference voltage and the monitoring voltage signal, the driving unit by a discrete control amount such that a light output from the light emitting element can have the specified power and an initial value setting unit for setting a raising component as an initial value in a control signal having the discrete control amount.
Abstract:
An interface circuit for interfacing between an integrated circuit (IC) on a transmitting side and an IC on a receiving side over a line on a printed circuit board comprises an output circuit implemented in the IC on the transmitting side and composed of a current source for supplying a given current and a switching circuit for cutting off the given current according to a binary signal and delivering the given current as a current signal to the line, and an input circuit implemented in the IC on the receiving side and composed of a transimpedance circuit whose input impedance is equal to the one of the line and which converts the current signal into a voltage signal, and a comparator for identifying the voltage signal relative to a given threshold voltage and reproducing the binary signal. This circuitry makes it possible to provide an interface circuit that can be implemented in a CMOS IC during CMOS processing and operated at a low voltage. A threshold voltage for use in identifying a signal on the receiving side is stabilized, thus realizing an interface circuit unsusceptible to influence of a change in CMOS processing or the like.
Abstract:
In an optical switch controller, in order that residual vibration at movement control of a movable body such as a tilt mirror can be reduced and controlled with high accuracy, a processing unit outputs a driving signal for controlling the angle of the tilt mirror, the driving signal is D/A converted by a D/A converter and then is changed to a high-voltage signal by a high-voltage amplifier to be supplied to the tilt mirror, the electrostatic capacity of the tilt mirror changes corresponding to angle change of the tilt mirror, a mirror-angle detecting unit detects the electrostatic capacity and feeds back it as a correction value to a processing unit, and the processing unit corrects the driving signal using a correction value obtained when the angle of the tilt mirror is actually changed.
Abstract:
In an optical switch controller, in order that residual vibration at movement control of a movable body such as a tilt mirror can be reduced and controlled with high accuracy, a processing unit outputs a driving signal for controlling the angle of the tilt mirror, the driving signal is D/A converted by a D/A converter and then is changed to a high-voltage signal by a high-voltage amplifier to be supplied to the tilt mirror, the electrostatic capacity of the tilt mirror changes corresponding to angle change of the tilt mirror, a mirror-angle detecting unit detects the electrostatic capacity and feeds back it as a correction value to a processing unit, and the processing unit corrects the driving signal using a correction value obtained when the angle of the tilt mirror is actually changed.
Abstract:
Using a switching signal from a coarse/fine switching and operation mode switching circuit, the width of change of a counter control value during power up is increased, and the width of change is reduced once a steady state is reached. In the steady state, the frequency of updating is limited by a control signal from an update permit control circuit. In the steady state, the frequency band of a current source in an LD driving circuit is reduced in width.
Abstract:
A working unit control system includes a working unit, an operating tool, a work type determining part, and a drive controlling part. The operating tool is configured to receive a user operation to drive the working unit, and to output an operation signal in accordance with the user operation. The work type determining part is configured to determine to which of a shaping work and a cutting edge aligning work a work type of the working unit corresponds based on the operation signals. The drive controlling part configured to move the bucket along a designed surface when the work type corresponds to the shaping work, the drive controlling art being configured in a predetermined position set with reference to the designed surface when the work type corresponds to the cutting edge aligning work, the designed surface indicating a target shape of an excavation object.
Abstract:
An excavation control system includes a working unit, hydraulic cylinders, a prospective speed obtaining part, a speed limit selecting part and a hydraulic cylinder controlling art. The prospective speed part is configured to obtain a first prospective speed depending on a first distance between the bucket and a first designed surface, and a second prospective speed depending on a second distance between the bucket and a second designed surface. The speed limit selecting part is configured to select one of the first and second prospective speeds as a speed limit based on a relative relation between the first designed surface and the bucket and a relative relation between the second designed surface and the bucket. The hydraulic cylinder controlling part is configured to limit a relative speed of the bucket relative to one of the first and second designed surfaces to the speed limit.
Abstract:
Using a switching signal from a coarse/fine switching and operation mode switching circuit, the width of change of a counter control value during power up is increased, and the width of change is reduced once a steady state is reached. In the steady state, the frequency of updating is limited by a control signal from an update permit control circuit. In the steady state, the frequency band of a current source in an LD driving circuit is reduced in width.
Abstract:
A circuit for controlling pulse width of a signal for driving a light emitting element, includes a pulse width control circuit capable of responding to multi-bit rates in the same circuit structure. For this purpose, the pulse width control circuit has a Tr/Tf control section controlling at least one of a rise time Tr and a fall time Tf of an input signal according to the bit rate of the input signal; a waveform shaping section shaping a signal output from the Tr/Tf control section to generate an output signal; and a control signal generating section generating a control signal for controlling an operation of the Tr/Tf control section based on pulse width control information.