摘要:
A liquid crystal display device includes, in sequence, a first substrate, a liquid crystal layer, and a second substrate. The first substrate, the liquid crystal layer, and the second substrate are disposed in a subpixel having a transmissive portion for performing transmissive display and a reflective portion for performing reflective display. The first substrate includes a first electrode and a second electrode. The second substrate includes a third electrode. The first electrode and the second electrode are disposed in the transmissive portion and at least the first electrode and the third electrode are disposed in the reflective portion. Alignment of the liquid crystal layer is controlled by an electric field occurring between the first electrode and the second electrode in the transmissive portion and by an electric field occurring between the first electrode and the third electrode in the reflective portion.
摘要:
A liquid crystal display device includes, in sequence, a first substrate, a liquid crystal layer, and a second substrate. The first substrate, the liquid crystal layer, and the second substrate are disposed in a subpixel having a transmissive portion for performing transmissive display and a reflective portion for performing reflective display. The first substrate includes a first electrode and a second electrode. The second substrate includes a third electrode. The first electrode and the second electrode are disposed in the transmissive portion and at least the first electrode and the third electrode are disposed in the reflective portion. Alignment of the liquid crystal layer is controlled by an electric field occurring between the first electrode and the second electrode in the transmissive portion and by an electric field occurring between the first electrode and the third electrode in the reflective portion.
摘要:
A liquid crystal display device includes a first substrate having a first electrode and a second electrode, a second substrate, a liquid crystal interposed between the first substrate and the second substrate, pixels each having a transmissive portion for performing a transmissive display and a reflective portion for performing a reflective display, and a driving circuit driving the pixels. Here, a third electrode is disposed in the second substrate opposed to the first substrate with the liquid crystal interposed therebetween. The first electrode is disposed in the transmissive portion along with the second electrode and is also disposed in the reflective portion along with the third electrode. The driving circuit is provided to independently apply potentials to the second electrode and the third electrode.
摘要:
A heads-up display system includes a liquid crystal display unit that can change optical characteristics in accordance with a video signal. The light modulated by the liquid crystal display unit is projected on a surface of a transparent plate that can reflect the light so as to realize a projection display. The light projected on the transparent plate is polarized light having a transmission axis extending in a direction parallel to a line defining the center with respect to incident light and reflective light of the transparent plate.
摘要:
An orientation controller which divides a pixel into a plurality of different priority alignment regions and an additional orientation controller are provided in a pixel. The additional orientation controller is provided at least at an end of a pixel of a long-side alignment region formed along the long side of the pixel among the divided alignment regions, for example, around a center position of the long side of the pixel. The additional orientation controller can be realized, for example, by forming a cutout pattern in a side of a first electrode (pixel electrode) forming a part of the pixel. Because the alignment direction is also controlled by the additional orientation controller, the alignment of liquid crystal in this region is stabilized.
摘要:
A display includes: a reflective or semi-transmissive display panel; a light-scattering layer disposed on a top surface of the display panel; and an auxiliary light source. The light-scattering layer is an anisotropic front scattering layer which relatively strongly scatters light incident from a specific direction within a first angle range and a second angle range. The light-scattering layer has a first scattering central axis and a second scattering central axis. The first angle range and a third angle range overlap each other in an angle sub-range not including a first specific angle and an incident-plane symmetrical angle symmetrical to a second specific angle. The auxiliary light source allows light therefrom incident from a side closer to the auxiliary light source or from a side closer to the display panel to mainly enter the light-scattering layer within the second angle range.
摘要:
A display includes: a reflective or semi-transmissive display panel; a light-scattering layer disposed on a top surface of the display panel; and an auxiliary light source. The light-scattering layer is an anisotropic front scattering layer which relatively strongly scatters light incident from a specific direction within a first angle range and a second angle range. The light-scattering layer has a first scattering central axis and a second scattering central axis. The first angle range and a third angle range overlap each other in an angle sub-range not including a first specific angle and an incident-plane symmetrical angle symmetrical to a second specific angle. The auxiliary light source allows light therefrom incident from a side closer to the auxiliary light source or from a side closer to the display panel to mainly enter the light-scattering layer within the second angle range.
摘要:
A surface-pressure distribution sensor includes a plurality of unit detection elements placed in a sensor area of a substrate and a switch formed on the substrate. The sensor is configured to operate under an operation mode in which the unit detection elements are sequentially selected or a standby mode in which the unit detection elements are not selected. The sensor is also configured to alternate between the two modes. The switch is configured change the standby mode to the operation mode when the switch is operated on.
摘要:
The response speed of liquid crystal is enhanced by reducing a distance d between a longer side (42) of a display electrode and a linear portion (51) of an orientation control window (50). On the other hand, a larger orientation control window (50) (corresponding to a smaller distance d) results in undesirable decrease in contrast of the liquid crystal. Further, the effect of increase in response speed is diminished when the distance d is smaller than the range of 25 &mgr;m to 30 &mgr;m. Therefore, the distance d is preferably in the range of 25 &mgr;m to 30 &mgr;m, and the window (50) preferably has a width of 7 &mgr;m. An LCD configured to satisfy the above conditions allows improvement in contrast and response speed.
摘要:
A liquid crystal display device includes a first substrate, a second substrate, a liquid crystal layer arranged between the first substrate and the second substrate, a plurality of pixels each one of which has a tranmissive display portion for performing a tranmissive display operation and a reflective display portion for performing a reflective display operation, a first electrode provided in the first substrate, a second electrode provided in the first substrate and a third electrode provided in one of the first substrate and the second substrate. The first electrode is arranged both in the tranmissive display portion and in the reflective display portion. The second electrode is arranged in the tranmissive display portion. The first electrode and the second electrode are configured to control an alignment of liquid crystal molecules of the liquid crystal layer. At least one of the first electrode and the second electrode is provided with a plurality of slits formed to extend along a perpendicular axis that is perpendicular to an interface of the tranmissive display portion and the reflective display portion. The third electrode is arranged in the reflective display portion. The second electrode and the third electrode are configured to be provided with voltage independently.