摘要:
The current invention applies to photon counting silicon x-ray detectors with energy discriminating capabilities and applications in x-ray imaging systems. The overall image quality produced by such a system is improved by the presented novel methods for optimally using the energy information in Compton events and making selective use of counts induced from charges collected in neighboring pixels. The pile-up problem during high-flux imaging regimes is reduced by a novel method for signal reset, which improves the count efficiency by reducing the risk of losing event due to signal pile-up in the read out electronics chain.
摘要:
An X-ray apparatus is provided for acquisition of images containing spectral information. An X-ray source and a collimator having multiple slits are operable together with a set of line detectors, the line detectors including linear arrays of photon counting channels. Each of the channels includes a photon conversion channel element which is operable to convert photons to electric pulses. A plurality of pulse counters are operable to count pulses in a plurality of different ranges of pulse strength, where the strength of a pulse depends on the energy of the photon. Further, an arrangement is included for an energy subtracting operation.
摘要:
An X-ray apparatus is provided for acquisition of images containing spectral information. An X-ray source and a collimator having multiple slits are operable together with a set of line detectors, the line detectors including linear arrays of photon counting channels. Each of the channels includes a photon conversion channel element which is operable to convert photons to electric pulses. A plurality of pulse counters are operable to count pulses in a plurality of different ranges of pulse strength, where the strength of a pulse depends on the energy of the photon. Further, an arrangement is included for an energy subtracting operation.
摘要:
A detector unit for detecting photons in the energy range 1 keV to 100 MeV, includes at least two converter layers adapted to interact with incident X-ray photons and to cause electrons to be emitted therefrom, at least one amplifier adapted to interact with the electrons emitted from the converters and adapted to produce a multiplicity of secondary electrons and photons representing a signal proportional to the incident fluence of X-ray photons, a connector connecting the detector to an electric field generator providing an electric drift field for secondary electrons in the detector, and a sensor device arranged to receive the signal and provide an input to electronic signal processor.
摘要:
A saw has a plurality of generally V-shaped teeth formed by punching. The sides of each tooth define cutting edges. A bevel extends along each cutting edge. The bevels are formed by punching with a tool having a surface oriented non-perpendicular to the saw blank. Burrs formed during the punching step are not removed, but are allowed to remain to enhance the cutting ability of the teeth.
摘要:
A saw has a plurality of generally V-shaped teeth formed by punching. The sides of each tooth define cutting edges. A bevel extends along each cutting edge. The bevels are formed by punching with a tool having a surface oriented non-perpendicular to the saw blank. Burrs formed during the punching step are not removed, but are allowed to remain to enhance the cutting ability of the teeth.
摘要:
The present invention relates to a method and an X-ray apparatus comprising an X-ray source, an x-ray detector, and at least a first collimator having a first active position and a second collimator having a second active position for forming a bundle of X-ray beams, wherein both of said active positions are located in a substantially straight path between said X-ray source and said detector, but at different distances from said X-ray source. The X-ray apparatus further comprises a selector arrangement for switching one of said first or second collimators in said first or second active position, whereby when one of said first or second collimators is in an active position the other collimator is in an inactive position.
摘要:
A Silicon detector for x-ray imaging is based on multiple semiconductor detector modules (A) arranged together to form an overall detector area, where each semiconductor detector module includes an x-ray sensor of crystalline Silicon oriented edge-on to incoming x-rays and connected to integrated circuitry for registration of x-rays interacting in the x-ray sensor through the photoelectric effect and through Compton scattering and for an incident x-ray energy between 40 keV and 250 keV to provide the spatial and energy information from these interactions to enable an image of an object. Further, anti-scatter modules (B) are interfolded between at least a subset of the semiconductor detector modules to at least partly absorb Compton scattered x-rays.
摘要:
A device with high efficiency and high spatial resolution for detection of individual x-rays includes a detector for x-rays with energy exceeding 20 keV based on a columnar scintillator having a number of columns, and a semiconductor readout circuit coupled to the scintillator, where the detector is configured for providing a detector resolution that is independent of scintillator thickness. This may be accomplished by estimating a misalignment of the columns of the columnar scintillator with respect to the direction of incoming x-rays and either physically aligning the columns of the columnar scintillator to the direction of incoming x-rays or computationally correcting for the estimated misalignment.
摘要:
An x-ray system for narrow bandwidth imaging of in particular small objects is provided. X-radiation from an x-ray source (1) is focused by chromatic x-ray optics (2) on an x-ray energy dependent distance from the optics. Asymmetric focusing of the x-ray optics is compensated for by choosing an asymmetric focal spot of the source. The energy selective focusing makes possible blocking unwanted x-ray energies (3) from reaching an object (4). In that way optimization of the energy according to the size of the object can be done to minimize dose and maximize signal-to-noise ratio (7). Furthermore, a critical edge subtraction image can be obtained at the object dependent optimal energy if the object is injected with a contrast agent having an absorption edge close to the optimal energy (8). Radiation is registered (5) and processed (6) to combine structural and energy subtraction images.