Abstract:
According to one aspect of the present invention, a controller is coupled to at least first and second signal processors (at least one of which includes analog demodulation circuitry and another of which includes digital demodulation circuitry). The controller may operate to disable the first signal processor responsive to a control signal that indicates that a second signal (corresponding to a demodulator output) is available from the second signal processor.
Abstract:
A method of controlling a clock frequency is disclosed and includes monitoring a plurality of master devices that are coupled to a bus within a system. The method also includes receiving an input from at least one of the plurality of master devices. The input can be a request an increase to the clock frequency of the bus. Further, the method includes selectively increasing the clock frequency of the bus in response to the request.
Abstract:
The disclosure is directed to a computational system including a processor, cache memory accessible to the processor, and a memory management unit accessible to the processor. The processor is configured to access a virtual memory space to perform a first task and is configured to access the virtual memory space to perform a second task. The virtual memory space references first and second sets of task instructions associated with the first and second tasks, respectively. The virtual memory space references non-instruction data associated with the first task. The cache memory is configured to store the first set of task instructions and the non-instruction data. The memory management unit is configured to determine the physical memory location of the second set of task instructions. The computational system is configured to not write the first set of task instructions and the non-instruction data to a physical location beyond the cache memory.
Abstract:
The disclosure is directed to a computational system including a processor and a memory management unit accessible to the processor. The processor is configured to access a common virtual memory space to perform a first task of a plurality of tasks and is configured to access the common virtual memory space to perform a second task of the plurality of tasks. The common virtual memory space references a first set of instructions associated with the first task and references a second set of instructions associated with the second task. The memory management unit is configured to determine a physical memory location of at least one of the first and second sets of instructions when the associated first or second task is to be performed by the processor.
Abstract:
The disclosure is directed to a device including a memory interface. The memory interface includes a data interface, a first state machine and a second state machine. The first state machine includes a first chip select interface and a first ready/busy interface. The first state machine is configured to select and monitor a first memory device via the first chip select interface and the first ready/busy interface, respectively, when the first memory device is coupled to the data interface. The second state machine includes a second chip select interface and a second ready/busy inter-face. The second state machine is configured to select and monitor a second memory device via the second chip select interface and the second ready/busy interface, respectively, when the second memory device is coupled to the data interface.
Abstract:
A method for mitigating interference from a switched-mode power supply begins by comparing a channel of interest of a plurality of channels with a switching rate of a switch-mode power supply. The method continues when the channel of interest compares unfavorably to the switching rate by adjusting the switching rate of the switch-mode power supply until the channel of interest compares favorably to the switching rate.
Abstract:
A wireless handset includes a long range wireless transceiver for selectively providing an inbound communication and an outbound communication through a wireless telephone network. A battery monitor module monitors a remaining power of a battery and produces a control signal when the remaining power compares unfavorably to a reserve power threshold. A processing module allows an outbound communication to an allowed recipient when the control signal is asserted, and prohibits an outbound communication to a disallowed recipient when the control signal is asserted.
Abstract:
A circuit for use by a multifunction handheld device is coupleable to an audio output device, the multifunction handheld device including, a color video display device, and a host interface that is coupleable to a host device. The circuit includes a host interface that is coupleable to a host device, wherein the host interface includes a wireless communication link for communicating with the host device via a wireless local area network protocol. The circuit further includes a processing module and a memory interface, operably coupled to the processing module and a memory that stores a plurality of digitally formatted files, and that stores operational instructions that cause the processing module to: receive a first digitally formatted file of the plurality of digitally formatted files from the host device when coupled to the host device via the host interface and store the first digitally formatted file in the memory, wherein the first digitally formatted file includes a compressed audio file; receive a second digitally formatted file of the plurality of digitally formatted files from a host device when coupled to the host device via a host interface and store the second digitally formatted file in the memory, wherein the second digitally formatted file includes a compressed video file; and playback a selected one of the plurality of digitally formatted files, the playback including the generation of an audio output signal for the audio output device, when the first digitally formatted file is selected, and the playback including rendering the selected one of the digitally formatted files for the color video display device, when the first digitally formatted file is selected.
Abstract:
A method and system for utilizing multiple speakers in a portable electronic device is disclosed. The method includes receiving an input at a user interface of a portable electronic device, switching a first and second speaker in a stereo configuration to a mono configuration by routing a first digital to analog converter (DAC) output to both the first and second speaker in response to the input and coupling a third speaker to a second DAC to receive a first audio signal that is responsive to the input. The system includes a first digital to analog converter coupled to a first speaker, a second DAC coupled to a second speaker, and a third speaker. The system further includes switching logic coupled to the first and second DACs. The switching logic is responsive to an input signal provided by a user interface of a portable device. In response to an input signal from the user interface, the switching logic couples the first and second speakers to the first DAC and the third speaker to the second DAC.
Abstract:
A system-on-a-chip integrated circuit includes a multimedia module that produces rendered output data and a high-speed interface. A processing module generates output multimedia data in accordance with at least a portion of a multimedia application in response to input multimedia data received from either the multimedia module or the high-speed interface. The output multimedia data is provided to either the multimedia module or the high-speed interface. An on-chip DC-to-DC converter converts a battery voltage into a supply voltage that is coupled to the multimedia module, the high-speed interface, and/or the processing module.