Abstract:
Systems and methods for mechanically blocking a nerve are provided. The system may comprise a blocking device configured to selectively compress the nerve. The system may also comprise a feedback mechanism configured to measure a response correlating to whether the nerve is blocked. When the blocking device compresses the nerve, a response from the feedback mechanism is received that correlates to the nerve being blocked or unblocked after a period of time.
Abstract:
A system comprises a device that includes a signal generator and at least one processor configured to monitor a value of a medical parameter of the patient that is associated with type 2 diabetes, a condition of metabolic syndrome, pancreatis, or any combination thereof. The at least one processor is configured to determine one or more stimulation parameters for stimulating at least one spinal nerve of the patient with an electrical signal, and control the signal generator to generate the electrical signal based on the one or more stimulation parameters. The electrical signal is introduced to the at least one spinal nerve by one or more electrodes, which causes a response by at least one anatomical element of the patient that changes the value of the medical parameter for the patient.
Abstract:
A system is provided herein for stimulating an anatomical element of a patient. For example, a device may be configured to generate a current, and an electrode device coupled to the device may be configured to apply the current to the anatomical element. Additionally, the system may include a user interface in communication with the implantable pulse generator, the electrode device, or both. In some examples, the user interface may include a first element that is configured to display information associated with the patient. Additionally, the user interface may include a second element that is configured to receive inputs for programming parameters of the current. The user interface may also include a third element that is configured to display diagnostic information associated with applying the current to the anatomical element.
Abstract:
A system is provided herein for stimulating an anatomical element of a patient. For example, the system may include a device (e.g., an implantable pulse generator) and an electrode device electrically coupled to the device. In some examples, the device may be configured to generate a current that is to be applied to the anatomical element via the electrode device to stimulate the anatomical element as part of a therapy aimed at achieving or supporting glycemic control in the patient. Additionally, the current may be applied to the anatomical element based on a machine learning algorithm that uses inputs gathered for determining one or more characteristics for the current. Accordingly, the machine learning algorithm may be configured to determine the one or more characteristics for the current specific to the patient (e.g., to provide personalized therapy settings for the patient).
Abstract:
A technique for identifying lead-related conditions, such as insulation breaches and/or externalization of lead conductors, includes analyzing characteristics of electrical signals generated on one or more electrode sensing vectors of the lead by a test signal to determine whether a lead-related condition exists. The characteristics of the electrical signals induced on the lead by the test signal may be significantly different on a lead having an insulation breach or externalized conductor than on a lead not having such lead-related conditions. As such, the implantable medical device may be subject to a known test signal and analyze the signals on the lead to detect lead-related conditions.
Abstract:
A technique for identifying lead-related conditions, such as insulation breaches and/or externalization of lead conductors, includes analyzing characteristics of electrical signals generated on one or more electrode sensing vectors of the lead by a test signal to determine whether a lead-related condition exists. The characteristics of the electrical signals induced on the lead by the test signal may be significantly different on a lead having an insulation breach or externalized conductor than on a lead not having such lead-related conditions. As such, the implantable medical device may be subject to a known test signal and analyze the signals on the lead to detect lead-related conditions.