Abstract:
Various embodiments of a prosthetic valve sizer and a method that utilizes such valve sizer are disclosed. In one or more embodiments, the prosthetic valve sizer can include a sizer body including an annular base and a post extending from the annular base. The prosthetic valve sizer can also include a resilient tip extending from the post of the sizer body. The resilient tip can include a material different from and more flexible than a material of the sizer body.
Abstract:
A system includes a medical device for implanting in a valve of a subject, the implantable medical device having a self-expanding frame; and a holder configured to retain the frame of the implantable medical device in a constricted configuration and to control expansion of the frame. The holder has a controllably constrictable and expandable loop, wherein the loop is disposed about at least a portion of the self-expanding frame such that constriction or expansion of the first loop controls constriction or expansion of the frame.
Abstract:
A heart prosthesis that includes at least one information marker and methods of using the heart prosthesis are disclosed. The at least one information marker can indicate any suitable information associated with the heart prosthesis, e.g., one or more of a manufacturer, type, model, feature, size, and date. And the heart prosthesis can include any suitable prosthesis, e.g., a prosthetic heart valve or an annuloplasty prosthesis.
Abstract:
A valve prosthesis includes an expandable frame comprising an outflow portion and an inflow portion connected to the outflow portion. The frame defines a central lumen extending between the outflow portion and the inflow portion. The frame is generally cylindrical in a fully expanded configuration. When the frame is in the fully expanded configuration, an outer surface of the inflow portion is concave. The inflow portion has an upper inflow portion and a lower inflow portion. When the frame is in the fully expanded configuration, the upper inflow portion flares outwardly from the central lumen of the frame to greater extent than the lower inflow portion.
Abstract:
Delivery devices and device elements that provide steering capabilities and methods of steering such delivery devices during the delivery of a stented prosthesis to a target site. Various delivery devices include a shaft assembly having a plurality of lumens through which tension members that compressively retain the stented prosthesis to the shaft assembly are routed. By selectively tensioning one or more tension members, the shaft assembly can be pulled or steered in a desired direction. Various embodiments include one or more steering or stiffening rods that can reinforce the device or counteract any unintended bending or steering of the delivery device.
Abstract:
A delivery system for delivering an implantable stented device to a lumen of a patient, the delivery system including an elongated body having a proximal end and a distal end, a driver mechanism positioned at the proximal end of the elongated body, an elongated threaded rod located axially distal to the driver mechanism, and a sheath including an elongated tubular portion having a hollow interior portion with a first diameter that is sized for compression and retention of the implantable stented device in a compressed configuration for delivery to a body lumen.
Abstract:
Delivery devices and device elements that provide steering capabilities and methods of steering such delivery devices during the delivery of a stented prosthesis to a target site. Various delivery devices include a shaft assembly having a plurality of lumens through which tension members that compressively retain the stented prosthesis to the shaft assembly are routed. By selectively tensioning one or more tension members, the shaft assembly can be pulled or steered in a desired direction. Various embodiments include one or more steering or stiffening rods that can reinforce the device or counteract any unintended bending or steering of the delivery device.
Abstract:
A heart prosthesis that includes at least one information marker and methods of using the heart prosthesis are disclosed. The at least one information marker can indicate any suitable information associated with the heart prosthesis, e.g., one or more of a manufacturer, type, model, feature, size, and date. And the heart prosthesis can include any suitable prosthesis, e.g., a prosthetic heart valve or an annuloplasty prosthesis.
Abstract:
A system includes a medical device for implanting in a valve of a subject, the implantable medical device having a self-expanding frame; and a holder configured to retain the frame of the implantable medical device in a constricted configuration and to control expansion of the frame. The holder has a controllably constrictable and expandable loop, wherein the loop is disposed about at least a portion of the self-expanding frame such that constriction or expansion of the first loop controls constriction or expansion of the frame.
Abstract:
Delivery devices and device elements that provide steering capabilities and methods of steering such delivery devices during the delivery of a stented prosthesis to a target site. Various delivery devices include a shaft assembly having a plurality of lumens through which tension members that compressively retain the stented prosthesis to the shaft assembly are routed. By selectively tensioning one or more tension members, the shaft assembly can be pulled or steered in a desired direction. Various embodiments include one or more steering or stiffening rods that can reinforce the device or counteract any unintended bending or steering of the delivery device.