Abstract:
An accelerometer system can include a sensor element comprising first and second proofmasses, the first proofmass accelerating in a first direction and the second proofmass accelerating in a second direction opposite the first direction in response to an external acceleration. A force rebalance controller applies control signals to at least one control element to provide a first force to accelerate the first proofmass toward a first null position and to at least one control element to provide a second force to accelerate the second proofmass toward a second null position. The force rebalance controller can also generate opposite polarity first and second output signals associated with respective displacements of the first and second proofmasses relative to the respective first and second null positions. An acceleration component calculates the external acceleration based on the first and second output signals.
Abstract:
One embodiment of the invention includes an atom beam gyroscope system. The system includes an atom beam system that generates an atom beam comprising alkali metal atoms along a length of a detection region orthogonal to a sensitive axis. The system also includes a detection system comprising a detection laser and photodetector. The detection laser can generate an optical detection beam that illuminates the detection region to pump the alkali metal atoms. The photodetector can measure an optical absorption of the optical detection beam by the alkali metal atoms in the atom beam and to generate an intensity signal associated with the measured optical absorption. The system further includes a gyroscope sensor configured to calculate rotation of the atom beam gyroscope system about the sensitive axis based on a magnitude of the intensity signal due to a Doppler-shift in energy of the alkali metal atoms in the atom beam.
Abstract:
A resonator gyroscope includes a central post; a resonator coupled to the central post; and a diaphragm coupled to the resonator, wherein at least one of the diaphragm and the central post accommodates rotation of the resonator in an axis in a plane of the diaphragm.
Abstract:
One embodiment of the invention includes an alkali beam cell system that comprises a reversible alkali beam cell. The reversible alkali beam cell includes a first chamber configured as a reservoir chamber that is configured to evaporate an alkali metal during a first time period and as a detection chamber that is configured to collect the evaporated alkali metal during a second time period. The reversible alkali beam cell also includes a second chamber configured as the detection chamber during the first time period and as the reservoir chamber during the second time period. The reversible alkali beam cell further includes an aperture interconnecting the first and second chambers and through which the alkali metal is allowed to diffuse.
Abstract:
One example includes an atomic sensor system. The system includes an optical source configured to provide an optical beam and a plurality of sensor cell systems. Each of the sensor cell systems includes sensing media enclosed in a volume therein. The system also includes optics configured to provide the optical beam to each of the sensor cell systems to provide interaction of the optical beam with the vapor in each of the respective sensor cell systems. The optical beam exiting each of the sensor cell systems is a respective detection beam. The system further includes a detection system comprising at least one configured to receive the detection beam from each of the sensor cell systems and to determine a measurable parameter based on an optical characteristic associated with the detection beam from each of the sensor cell systems.
Abstract:
One embodiment includes a vapor cell for an atomic physics-based sensor system. The vapor cell includes a cell wall formed from an approximately transparent material. The cell wall can enclose an alkali metal vapor and can include an inner surface and an outer surface. The vapor cell can also include at least one structural feature provided on at least one of the inner surface and the outer surface of the cell wall and extending along a portion of the respective at least one of the inner surface and the outer surface.
Abstract:
One embodiment of the invention includes a magnetometer system. The system includes a sensor cell comprising alkali metal particles and a probe laser configured to provide a probe beam through the sensor cell. The system also includes a detection system configured to implement nuclear magnetic resonance (NMR) detection of a vector magnitude of an external magnetic field in a first of three orthogonal axes based on characteristics of the probe beam passing through the sensor cell and to implement electron paramagnetic resonance (EPR) detection of a vector magnitude of the external magnetic field in a second and a third of the three orthogonal axes based on the characteristics of the probe beam passing through the sensor cell. The system further includes a controller configured to calculate a scalar magnitude of the external magnetic field based on the magnitude of the external magnetic field in each of the three orthogonal axes.
Abstract:
One embodiment includes a method for dynamic self-calibration of an accelerometer system. The method includes forcing a proof-mass associated with a sensor of the accelerometer system in a first direction to a first predetermined position and obtaining a first measurement associated with the sensor in the first predetermined position via at least one force/detection element of the sensor. The method also includes forcing the proof-mass to a second predetermined position and obtaining a second measurement associated with the sensor in the second predetermined position via the at least one force/detection element of the sensor. The method further includes calibrating the accelerometer system based on the first and second measurements.
Abstract:
One embodiment includes a nuclear magnetic resonance (NMR) gyroscope system. The system includes a vapor cell that encloses an alkali metal and a gyromagnetic isotope. The system also includes a magnetic field source that generates a magnetic field aligned with a sensitive axis of the NMR gyroscope system and which is provided through the vapor cell to cause the alkali metal and the gyromagnetic isotope to precess. The system also includes a laser that generates an optical beam that polarizes the alkali metal in the vapor cell to facilitate the precession of the alkali metal and the gyromagnetic isotope. The system further includes an angular rotation sensor configured to calculate a rotation angle about the sensitive axis based on a measured characteristic of a detection beam corresponding to the optical beam exiting the vapor cell, the characteristic being associated with the precession of the gyromagnetic isotope.
Abstract:
One embodiment of the invention includes an atom beam gyroscope system. The system includes an atom beam system that generates an atom beam comprising alkali metal atoms along a length of a detection region orthogonal to a sensitive axis. The system also includes a detection system comprising a detection laser and photodetector. The detection laser can generate an optical detection beam that illuminates the detection region to pump the alkali metal atoms. The photodetector can measure an optical absorption of the optical detection beam by the alkali metal atoms in the atom beam and to generate an intensity signal associated with the measured optical absorption. The system further includes a gyroscope sensor configured to calculate rotation of the atom beam gyroscope system about the sensitive axis based on a magnitude of the intensity signal due to a Doppler-shift in energy of the alkali metal atoms in the atom beam.