Abstract:
The invention relates to a method for extinguishing a smouldering fire in a silo by introducing inert gas into the silo. The inert gas is introduced through a venturi-type nozzle above the stored content in the silo with a slow streaming velocity in such a way that mass ratio of the entrained surrounding gas to the incoming liquid inert gas is between 0.5 and 20. Thus a closed inert gas layer is formed above the smouldering fire.
Abstract:
Described is a method for introducing at least one manufactured gas in the area of an oil reservoir for the purpose of enhancing the recovery of the oil reservoir. The gas is at least temporarily introduced in shock waves.
Abstract:
The invention relates to a burner with a burner head (1) and a gas feed pipe (2) that is located in the burner head (1) and that is surrounded by an ring channel (3) for feed of another gas. In the gas feed pipe (2) and in the ring channel (3), there are means (10, 11) for producing a swirl of the gas flowing through the gas feed pipe (2) and that flowing through the ring channel (3).
Abstract:
For the thermal conversion of hydrogen sulfide contained in a gaseous stream, the gaseous stream is introduced into a non-catalytic reactor together with sulfur dioxide obtained from a waste gas purification facility arranged downstream of the reactor. If necessary, the sulfur yield can be regulated by feeding additional fuel gas and/or reducing gas and/or process air into the reactor. The thus-produced vapor-phase sulfur is condensed out by cooling and is obtained as a product; the resultant gaseous stream extensively freed of sulfur compounds is discharged and fed into the aforesaid downstream waste gas purification facility.
Abstract:
A process for performing catalytic reactions with intensive heat of reaction, in which a reaction mixture is conducted through a catalyst bed, from which the reaction heat is removed or to which it is fed by indirect heat exchange with a heat exchange medium. The catalyst bed adjoins at least one bed of a catalytically inert material, which also is in indirect heat exchange with the heat exchange medium.
Abstract:
The invention relates to a method for extinguishing burning deposited goods situated in a silo, inert gas being introduced into the silo above the burning deposited goods and off gas being extracted above the burning deposited goods from the silo.
Abstract:
The invention relates to a reactor for carrying out reactions having a high enthalpy change containing catalyst particles between cooled dividing walls. According to the invention, the cooled dividing walls are formed by metal plates/metallic components in which hollow or intermediate spaces in the form of channels are provided in the metal plates/components for accommodating and conveying a cooling medium so as to cool the reactor. The reactor can be used for carrying out strongly exothermic catalytic reactions, for example for the selective hydrogenation of acetylene to ethylene.
Abstract:
The invention relates to a process for the production of ethylene oxide from a gaseous feedstock—in a cooled exothermic catalytic reaction of ethylene and oxygen from this feed gas in parallel flow-through reaction zones. According to the invention, the reaction zones are limited by cooled dividing walls, and the cooling is achieved by a fluid that flows inside the dividing walls. In addition, the invention relates to a reactor for this purpose with catalyst particles between cooled dividing walls. According to the invention, the cooled dividing walls are formed with the aid of metal plates, and cavities in the form of channels for receiving and for passing through a coolant are arranged for cooling in the metal plates.
Abstract:
The invention relates to a process for the removal of HCN from gas mixtures that contain at least HCN and sulfur compounds, especially from gas mixtures that are obtained by partial oxidation of hydrocarbons, by catalytic decomposition of HCN, as well as a catalyst for the decomposition of HCN. According to the invention, the gas mixture is brought into contact with a catalyst which decomposes the HCN by hydrogenation and/or by hydrolysis and COS that is contained in the gas mixture is decomposed at least partially in this catalyst by hydrolysis. Advantageously, a catalyst that is based on titanium oxide and/or zirconium oxide as a vehicle and that contains chromium oxide as an active component is used. Advantageously, the catalyst is reduced during catalyst production or before use with H.sub.2 and/or a reducing gas at temperatures above the operating temperature of catalytic decomposition.
Abstract:
A process and apparatus for performing catalytic reactions with intensive heat of reaction in which a reaction mixture is conducted through a catalyst bed, from which the reaction heat is removed or to which it is fed by indirect heat exchange with a heat exchange medium. The catalyst bed adjoins at least one bed of a catalytically inert material, which also is in indirect heat exchange with the heat exchange medium.