摘要:
A fuel humidifier/pre-heater system (10) is provided for pre-heating and humidifying a fuel flow, and is particularly useful for pre-heating and humidifying a fuel flow for a fuel cell, particularly molten-carbonate fuel cells (60). The system includes a steam generator (12), a water bypass (18), a liquid/steam mixer (20), and a mixture heater (14). The humidified fuel outlet temperature of the system is controlled by bypassing a portion of the water flow around the steam generator (12) so as to control the amount of superheat. The steam is then mixed with the fuel, and then the fuel/steam mixture is heated in the mixture heater (14). Additionally, a fuel bypass (16) can be provided for further temperature control by bypassing a portion of the fuel around the mixture heater (14) and then mixing the bypassed fuel with the steam/fuel mixture that has passed through the mixture heater (14).
摘要:
Rapid response to a fuel cell system of the type including a reformer (32) in response to a change in load is achieved in a system that includes a fuel tank (24), a water tank (20) and a source (42) of a fluid at an elevated temperature. A heat exchanger (28) is provided for vaporizing fuel and water and delivering the resulting vapor to the system reformer (32) and includes an inlet (64) and an outlet (66) for the fluid. It includes a plurality of fluid flow paths (100), (102), (104) extending between the inlet (64) and outlet (66) as well as a fuel inlet (56) and a fuel outlet (58) spaced therefrom. The fuel inlet (56) and outlet (58) are connected by a plurality of fuel flow paths (52) that are in heat exchange relation with the fluid flow paths (100), (102), (104) and the fuel water inlet (56) is located adjacent the upstream ends of the fluid flow paths (100), (102), (104).
摘要:
Rapid response to a fuel cell system of the type including a reformer (32) in response to a change in load is achieved in a system that includes a fuel tank (24), a water tank (20) and a source (42) of a fluid at an elevated temperature. A heat exchanger (28) is provided for vaporizing fuel and water and delivering the resulting vapor to the system reformer (32) and includes an inlet (64) and an outlet (66) for the fluid. It includes a plurality of fluid flow paths (100), (102), (104) extending between the inlet (64) and outlet (66) as well as a fuel inlet (56) and a fuel outlet (58) spaced therefrom. The fuel inlet (56) and outlet (58) are connected by a plurality of fuel flow paths (52) that are in heat exchange relation with the fluid flow paths (100), (102), (104) and the fuel water inlet (56) is located adjacent the upstream ends of the fluid flow paths (100), (102), (104).
摘要:
Distribution of liquid refrigerant in an evaporator having a pair of spaced headers (20), (22) and a plurality of tubes (24) extending between the headers (20), (22) to define a plurality of spaced refrigerant passages (42) is achieved through the use of at least one refrigerant inlet (30), (32), (34), (36) within one of the headers (20). The inlet has a first port (49) adapted to be connected to a source of refrigerant to be evaporated, and oppositely directed second and third ports (50), (52) connected to the first port (49). The second port (50) is directed away from one side (44) of the header (20) while the third port (54) is directed toward the side (44) of the header (20).
摘要:
A fuel cell thermal management system (10) is provided for maintaining a fuel cell stack (12) within a desired operating temperature range. The system (10) includes a thermal storage reservoir (14), a radiator (16), and a mixing valve (18). Heat from the fuel cell stack (12) is rejected to the thermal storage reservoir (14), and heat from the reservoir (14) is rejected to ambient in the radiator (16). The mixing valve (18) receives a coolant flow from the fuel cell stack (12) at a first temperature T1 and a coolant flow from the radiator (16) or the reservoir (14) at a second temperature T2 and mixes the two coolant flow together to provide a mixed coolant flow to the stack (12) at a third temperature T3 to maintain the stack (12) within its desired operating temperature range.
摘要:
A condenser (10) and method for separating a fluid flow is provided. The condenser (10) maybe used for separating a cathode exhaust flow (60) into a condensed liquid (86) and a non-condensed gas (70). The condenser (10) includes a vertical inlet (14), a vertical outlet (16), a gas flow path (20), a liquid flow path (22), a non-condensed gas outlet (24) and a condensed liquid outlet (26).
摘要:
An integrated heat exchanger and muffler unit (50,120,140) is provided for transferring heat between a first fluid and a second fluid, and for muffling the noise of the first fluid. The unit includes a housing (52) including a first inlet (60) for the first fluid, a first outlet (62) for the first fluid, a second inlet (64) for the second fluid, and a second outlet (66) for the second fluid. The unit (50,120,140) further includes a resonator (76) in the housing (52) and connected between the first inlet and outlet (60,62) to muffle noise in the first fluid, and a heat exchanger core (11,122) in the housing (52) connected to the first and second inlets and outlets to transfer heat between the first and second fluids. In one embodiment, the heat exchanger core surrounds the resonator. In another embodiment, the resonator surrounds the heat exchanger core.
摘要:
A highly efficient parallel flow evaporator is provided by combining a pair of identical units (10), (12) wherein each includes a pair of identical, parallel, spaced headers (40) each having slots (44) receiving the ends of identical flattened tubes (22). Identical tanks (42) are bonded to each of the headers (40) and each has an identical central flat surface (52) and an identical, centrally located port (60). Fins (26) extend between adjacent tubes (22) in each unit (10), (12) and an inlet/outlet fixture (32) is bonded to the flat surfaces (52) of one pair of tanks (42) defined by adjacent tanks (42) of both of the units (10),(12). A cross-over fixture (30) is bonded to the flat surfaces (52) of the other pair of tanks (42) defined by the remaining tanks (42) of both of the units (10),(12). The invention minimizes the number of geometrically different parts, provides an improved distributor (140) for refrigerant, provides an improved inlet passage (108) that provides a uniform stream of refrigerant to the distributor (140) and provides for the direction of refrigerant emanating from the cross-over fixture (30) in a direction parallel to the tubes (22) for improved uniformity.
摘要:
The present invention provides an exhaust gas waste heat recovery heat exchanger including a housing having a working fluid inlet, a working fluid outlet, an exhaust inlet, and an exhaust outlet, an exhaust flow path extending through the housing between the exhaust inlet and the exhaust outlet, and a working fluid flow path extending through the housing between the working fluid inlet and the working fluid outlet and having a first portion and a second portion. A flow of working fluid along the first portion of the working fluid flow path can be substantially counter to a flow of exhaust along the exhaust flow path, and the flow of working fluid along the second portion of the working fluid flow path can be substantially parallel to the flow of exhaust along the exhaust flow path.
摘要:
A hydrogen storage and release device (10) is provided for storing and releasing hydrogen from a metal hydride (30) contained in the device (10) based on heat transfer to or from a coolant flow provided through the device (10). The device (10) includes a housing (12) and a metal hydride containing a tube bundle located within the housing (12), with the exteriors (26) of the tubes (16) of the bundle (14) being reduced over a selected length to provide a free flow area for the coolant flow.