Abstract:
Automated speed ramp control of stepper motor acceleration and deceleration using direct memory access (DMA) and core independent peripherals (CIPs) comprises a numerically controlled oscillator (NCO) controlled through direct memory access (DMA) transfers of prescale values used in combination with a clock oscillator to generate clock pulses that are a function of the clock oscillator frequency and the prescale values. This automates changing the frequency of the NCO, thereby controlling steeper motor speed, without requiring computer processing unit (CPU) overhead. The DMA module is enabled during a first number of clock pulses for step speed acceleration, disabled during a second number of clock pulses for normal operation at full step speed, and then re-enabled during a third number of clock pulses for step speed deceleration. A table in memory may store and provide a plurality of acceleration and deceleration prescale values for DMA transfers to the NCO.
Abstract:
An operational amplifier with totem pole connected output transistors having inputs coupled to multiplexers for selectable coupling of signals and voltage levels thereto. The high and low output transistors may be forced hard on or hard off in addition to normal coupling of signals thereto. The operation of the output transistors may be dynamically changed to pass only positive going signals, negative going signals, placed in a tristate high impedance state, hard connected to a supply voltage and/or hard connected to supply common return. A core independent peripheral (CIP) may also be coupled to the operational amplifier for dynamically changing the multiplexer inputs in real time, as can external control signals to a control circuit coupled to the multiplexers.
Abstract:
A liquid crystal display with integrated capacitive touch sensors has an LCD display with at least one alphanumerical or graphic symbol, and at least one capacitive touch sensor arranged above a display layer or within transparent layers of the LCD display forming the alphanumerical or graphical symbol.
Abstract:
A smoke detection sensor ion chamber has a capacitance and a change in the permittivity of that capacitance dielectric (ionized air in the chamber) may be used to detect the presence of smoke therein. Smoke from typical fires is mainly composed of unburned carbon that has diffused in the surrounding air and rises with the heat of the fire. The permittivity of the carbon particles is about 10 to 15 times the permittivity of clean air. The addition of the carbon particles into the air in the ion chamber changes in the permittivity thereof that is large enough to measure by measuring a change in capacitance of the ion chamber.
Abstract:
A smoke detection sensor ion chamber has a capacitance and a change in the permittivity of that capacitance dielectric (ionized air in the chamber) may be used to detect the presence of smoke therein. Smoke from typical fires is mainly composed of unburned carbon that has diffused in the surrounding air and rises with the heat of the fire. The permittivity of the carbon particles is about 10 to 15 times the permittivity of clean air. The addition of the carbon particles into the air in the ion chamber changes in the permittivity thereof that is large enough to measure by measuring a change in capacitance of the ion chamber.
Abstract:
An integrated circuit device has a touch controller comprising at least one input, a liquid crystal display (LCD) controller comprising a plurality of outputs, an external interface comprising a plurality of external pins, and a multiplexer operable in a first mode to connect said plurality of external pins with said plurality of outputs of the LCD controller and in a second mode to connect at least one of said plurality of external pins with said touch controller.
Abstract:
A combination of capacitive, mutual capacitive, and inductive proximity and touch sensing is used to detect the presence and nature of nearby objects to a wireless device. When the proximity of metal or a user is sensed the output power of a Wi-Fi module in the device is reduced so as to prevent harm to the user and/or the Wi-Fi transmitter amplifier circuits. Inductive sensors located at the four corners of the wireless device are used to detect metal, and capacitive sensors are used to detect a capacitance change or shift due to the presence of a user's hand, body or metal. In addition, the capacitive sensors may be located at the four corners of the device and can measure changes in the mutual capacitance coupling between these capacitive sensors.
Abstract:
A liquid crystal display with integrated capacitive touch sensors has an LCD display with at least one alphanumerical or graphic symbol, and at least one capacitive touch sensor arranged above a display layer or within transparent layers of the LCD display forming the alphanumerical or graphical symbol.
Abstract:
A plurality of capacitive proximity sensors on a substantially horizontal plane and in combination with a microcontroller are used to detect user gestures for Page Up/Down, Zoom In/Out, Move Up/Down/Right/Left, Rotation, etc., commands to a video display. The microcontroller is adapted to interpret the capacitive changes of the plurality of capacitive proximity sensors caused by the user gestures, and generate control signals based upon these gestures to control the visual content of the video display.
Abstract:
Automated speed ramp control of stepper motor acceleration and deceleration using direct memory access (DMA) and core independent peripherals (CIPs) comprises a numerically controlled oscillator (NCO) controlled through direct memory access (DMA) transfers of prescale values used in combination with a clock oscillator to generate clock pulses that are a function of the clock oscillator frequency and the prescale values. This automates changing the frequency of the NCO, thereby controlling steeper motor speed, without requiring computer processing unit (CPU) overhead. The DMA module is enabled during a first number of clock pulses for step speed acceleration, disabled during a second number of clock pulses for normal operation at full step speed, and then re-enabled during a third number of clock pulses for step speed deceleration. A table in memory may store and provide a plurality of acceleration and deceleration prescale values for DMA transfers to the NCO.