FOLDED ACCESS LINE FOR MEMORY CELL ACCESS IN A MEMORY DEVICE

    公开(公告)号:US20230171968A1

    公开(公告)日:2023-06-01

    申请号:US17536927

    申请日:2021-11-29

    CPC classification number: H01L27/2463 H01L45/16

    Abstract: Systems, methods, and apparatus related to spike current suppression in a memory array. In one approach, a memory device includes a memory array having a crosspoint memory architecture. The memory array has access lines (e.g., word lines and/or bit lines) configured to access memory cells of the memory array. Spike current suppression is implemented using a folded access line structure. Each access line includes integrated top and bottom insulating layers that restrict current flow to the memory cells through a narrower middle portion of the access line. For near memory cells located overlying or underlying the insulating layers, the resistance to each memory cell is increased because the cell is accessed using only the higher resistance path of the meandering, folded circuit path that flows through the middle portion. Spike discharge that occurs when the memory cell is selected is reduced by this higher resistance path.

    Spike current suppression in a memory array

    公开(公告)号:US11514985B2

    公开(公告)日:2022-11-29

    申请号:US17222864

    申请日:2021-04-05

    Abstract: Systems, methods, and apparatus related to spike current suppression in a memory array. In one approach, a memory device includes a memory array having a cross-point memory architecture. The memory array has access lines (e.g., word lines and/or bit lines) configured to access memory cells of the memory array. Each access line is split into left and right portions. Each portion is electrically connected to a single via, which a driver uses to generate a voltage on the access line. To reduce electrical discharge associated with current spikes, a first resistor is located between the left portion and the via, and a second resistor is located between the right portion and the via.

    SOCKET STRUCTURE FOR SPIKE CURRENT SUPPRESSION IN A MEMORY ARRAY

    公开(公告)号:US20220319595A1

    公开(公告)日:2022-10-06

    申请号:US17222870

    申请日:2021-04-05

    Abstract: Systems, methods, and apparatus related to spike current suppression in a memory array. In one approach, a memory device includes a memory array having a cross-point memory architecture. The memory array has access lines (e.g., word lines and/or bit lines) configured to access memory cells of the memory array. Each access line has left and right portions. A conductive layer is positioned in the access line between the left and right portions. The conductive layer is formed in a socket that has been etched or otherwise formed in the access line to provide an opening. This opening is filled by the conductive layer. The conductive layer electrically connects the left and right portions of the access line to a via. A driver is electrically connected to the via for generating a voltage on the access line for accessing one or more memory cells. To reduce electrical discharge associated with current spikes, a first resistive film is formed in the access line between the left portion and the conductive layer, and a second resistive film is formed in the access line between the right portion and the conductive layer.

    Charge screening structure for spike current suppression in a memory array

    公开(公告)号:US11348640B1

    公开(公告)日:2022-05-31

    申请号:US17222874

    申请日:2021-04-05

    Abstract: Systems, methods, and apparatus related to spike current suppression in a memory array. In one approach, a memory device includes a memory array having a cross-point memory architecture. The memory array has access lines (e.g., word lines and/or bit lines) configured to access memory cells of the memory array. Each access line has left and right portions. Spike current suppression is implemented by charge screening structures. The charge screening structures are formed by laterally integrating insulating layers into selected interior regions of the left and/or right portions of the access line. The insulating layers vertically separate the access line into top and bottom conductive portions above and below the insulating layers. For memory cells located overlying or underlying the insulating layers, the resistance to each memory cell is increased because the cell is accessed using only the higher resistance path of the top or bottom conductive portion. During a spike discharge, charge is choked by this higher resistance path. This suppresses spike current that occurs when the memory cell is selected.

Patent Agency Ranking