Optical device to improve image uniformity

    公开(公告)号:US10698214B2

    公开(公告)日:2020-06-30

    申请号:US15407957

    申请日:2017-01-17

    Abstract: An optical waveguide including an input-coupler, a first intermediate-component, a second intermediate-component and an output-coupler is described herein. The input-coupler couples, into the waveguide, light corresponding to an image associated with an input-pupil and directs the light toward the first intermediate-component. The first intermediate-component performs horizontal or vertical pupil expansion and redirects the light corresponding to the image toward the output-coupler. The second intermediate-component is a diffractive component located between the first-intermediate component and the output-coupler and performs pupil redistribution on a portion of the light corresponding to the image before the portion reaches the output-coupler. The output-coupler performs the other one of horizontal or vertical pupil expansion and couples, out of the waveguide, the light corresponding to the image. Related methods and systems are also described.

    Rainbow removal in near-eye display using polarization-sensitive grating

    公开(公告)号:US10234686B2

    公开(公告)日:2019-03-19

    申请号:US14942408

    申请日:2015-11-16

    Inventor: Tuomas Vallius

    Abstract: In a near-eye optical display system comprising a waveguide and diffractive optical elements (DOEs) configured for in-coupling, exit pupil expansion, and out-coupling, a rainbow phenomenon manifested in the display may be removed or reduced using a polarizing filter at the front of the system so that real-world/stray light entering the system has a particular polarization state, for example TM-polarized. The polarizing filter is utilized in conjunction with a downstream out-coupling DOE that includes diffractive grating structures that are configured to enable sensitivity to an opposite polarization state, for example TE-polarized. An imager is configured to produce virtual-world images that also have a TE-polarized state. The polarization-sensitive out-coupling DOE diffracts the TE-polarized imaging beam out of the grating for display while the TM-polarized light from the real world and/or stray light passes through the grating without diffraction and thus cannot contribute to rainbows in the display.

    DISPLAY APPARATUSES, SYSTEMS AND METHODS INCLUDING CURVED WAVEGUIDES

    公开(公告)号:US20190072767A1

    公开(公告)日:2019-03-07

    申请号:US15698456

    申请日:2017-09-07

    Abstract: Apparatuses and systems including curved optical waveguides, and methods for use therewith, are described herein. An output-grating of a curved waveguide includes a spatially modulated grating period configured to cause, for each beam of light corresponding to an image coupled into a bulk-substrate of the curved waveguide by an input-grating, corresponding rays of light output from different locations of the output-grating to be substantially collimated. Adaptive optics of a display engine compensate for aberrations that vary over a field-of-view associated with light corresponding to the image out-coupled by the output-grating. Further, a curved portion of the curved waveguide is designed to keep internally reflected light below a critical angle to prevent inadvertent out-coupling thereof. Further, curved surfaces of the curved waveguide can include polynomial surfaces to compensate for lateral color errors and distortion.

    WAVEGUIDE DISPLAY WITH MULTIPLE FOCAL DEPTHS
    15.
    发明申请

    公开(公告)号:US20180196263A1

    公开(公告)日:2018-07-12

    申请号:US15402904

    申请日:2017-01-10

    Abstract: A near-eye optical display system utilized in augmented reality devices includes a see-through waveguide display having optical elements configured for in-coupling virtual images from an imager, exit pupil expansion, and out-coupling virtual images with expanded pupil to the user's eye. The near-eye optical display system further includes a curved two-sided array of electrically-activated tunable liquid crystal (LC) microlenses that is located between the waveguide and the user's eye. The LC microlenses are distributed in layers on each side of the two-sided array. Each pixel in the waveguide display is mapped to an LC microlens in the array, and multiple nearby pixels may be mapped to the same LC microlens. A region of the waveguide display that the user is gazing upon is detected and the LC microlens that is mapped to that region may be electrically activated to thereby individually shape the wavefront of each pixel in a virtual image.

    Diffractive optical elements with asymmetric profiles

    公开(公告)号:US10670862B2

    公开(公告)日:2020-06-02

    申请号:US14790379

    申请日:2015-07-02

    Abstract: In an optical display system that includes a waveguide with multiple diffractive optical elements (DOEs), gratings in one or more of the DOEs may have an asymmetric profile in which gratings may be slanted or blazed. Asymmetric gratings in a DOE can provide increased display uniformity in the optical display system by reducing the “banding” resulting from optical interference that is manifested as dark stripes in the display. Banding may be more pronounced when polymeric materials are used in volume production of the DOEs to minimize system weight, but which have less optimal optical properties compared with other materials such as glass. The asymmetric gratings can further enable the optical system to be more tolerant to variations—such as variations in thickness, surface roughness, and grating geometry—that may not be readily controlled during manufacturing particularly since such variations are in the submicron range.

Patent Agency Ranking