Abstract:
A semiconductor device having a transistor or capacitor with an ultra-thin oxide, which is thinner than 10 angstrom in thickness, is manufactured by eliminating a gate oxidation step in the processing and using the polysilicon reoxidation step to create the ultra-thin gate oxide by diffusion after formation of the gate.
Abstract:
An ultra-large scale CMOS integrated circuit semiconductor device is processed after the formation of the gates and gate oxides by N-type dopant implantation to form N-type shallow source and drain extension junctions. Spacers are formed for N-type dopant implantation to form N-type deep source and drain junctions. A higher temperature rapid thermal anneal then optimizes the NMOS source and drain extension junctions and junctions, and the spacers are removed. A thin oxide spacer is used to displace P-type dopant implantation to P-type shallow source and drain extension junctions. A nitride spacer is then formed for P-type dopant implantation to form P-type deep source and drain junctions. A second lower temperature rapid thermal anneal then independently optimizes the PMOS source and drain junctions independently from the NMOS source and drain junctions.
Abstract:
A method (100) of forming a transistor (50, 80) includes forming a gate oxide (120) over a portion of a semiconductor material (56, 122) and forming a doped polysilicon film (124) having a dopant concentration over the gate oxide (122). Subsequently, the doped polysilicon film (124) is etched to form a gate electrode (52) overlying a channel region (58) in the semiconductor material (56, 122), wherein the gate electrode (52) separates the semiconductor material into a first region (60) and a second region (68) having the channel region (58) therebetween. The method (100) further includes forming a drain extension region (64) in the first region (60) and a source extension region (72) in the second region (68), and forming a drain region (62) in the first region (60) and a source region (70) in the second region (68). The source/drain formation is such that the drain and source regions (62, 70) have a dopant concentration which is less than the polysilicon film (124) doping concentration. The lower doping concentration in the source/drain regions (62, 70) lowers the junction capacitance and provides improved control of floating body effects when employed in SOI type processes.
Abstract:
A method in the manufacture of ultra-large scale integrated circuit semiconductor devices suppresses boron loss due to segregation into the screen oxide during the boron activation rapid thermal anneal. A nitridation of the screen oxide is used to incorporate nitrogen into the screen oxide layer prior to boron implantation for ultra-shallow, source and drain extension junctions. A second nitridation of a second screen oxide is used prior to boron implantation for deeper, source and drain junctions. This method significantly suppresses boron diffusion and segregation away from the silicon substrate which reduces series resistance of the complete source and drain junctions.
Abstract:
An interconnection level of conductive lines and connecting vias separated by insulation for integrated circuits and substrate carriers for semiconductor devices using dual damascene with only one mask pattern for the formation of both the conductive lines and vias. The mask pattern of conductive lines contains laterally enlarged areas where the via openings are to formed in the insulating material. After the conductive line openings with laterally enlarged areas are created, the openings are filled with a conformal material whose etch selectivity is substantially less than the etch selectivity of the insulating material to the enchant for etching the insulating material and whose etch selectivity is substantially greater than the insulating material to its enchant. The conformal material is anisotropically etched to form sidewalls in the enlarged area and remove the material between the sidewalls but leave material remaining in the parts of the conductive lines openings. The sidewalls serve as self aligned mask for etching via openings. The conformal material is either a conductive material which is left in place after the via openings are formed or an insulating material which is removed. In the former, the partially filled conductive line openings are filled with additional conductive material along with the via, which is either the same or different conductive material. In the latter, the conductive line openings and vias are filled with the same conductive material.
Abstract:
A semiconductor substrate is provided having an insulator thereon with a semiconductor layer on the insulator. A deep trench isolation is formed, introducing strain to the semiconductor layer. A gate dielectric and a gate are formed on the semiconductor layer. A spacer is formed around the gate, and the semiconductor layer and the insulator are removed outside the spacer. Recessed source/drain are formed outside the spacer.
Abstract:
A method for forming fin structures for a semiconductor device that includes a substrate and a dielectric layer formed on the substrate is provided. The method includes etching the dielectric layer to form a first structure, depositing an amorphous silicon layer over the first structure, and etching the amorphous silicon layer to form second and third fin structures adjacent first and second side surfaces of the first structure. The second and third fin structures may include amorphous silicon material. The method further includes depositing a metal layer on upper surfaces of the second and third fin structures, performing a metal-induced crystallization operation to convert the amorphous silicon material of the second and third fin structures to a crystalline silicon material, and removing the first structure.
Abstract:
A method of manufacturing an integrated circuit (IC) utilizes a shallow trench isolation (STI) technique. The shallow trench isolation technique is used in strained silicon (SMOS) process. The liner for the trench is formed from a semiconductor or metal layer which is deposited in a low temperature process which reduces germanium outgassing. The low temperature process can be a ALD process.
Abstract:
Methods are provided for fabricating a semiconductor device having an impurity doped region in a silicon substrate. The method comprises forming a metal silicide layer electrically contacting the impurity doped region and depositing a conductive layer overlying and electrically contacting the metal silicide layer. A dielectric layer is deposited overlying the conductive layer and an opening is etched through the dielectric layer to expose a portion of the conductive layer. A conductive material is selectively deposited to fill the opening and to electrically contact the impurity doped region.
Abstract:
A semiconductor substrate is provided having an insulator thereon with a semiconductor layer on the insulator. A deep trench isolation is formed, introducing strain to the semiconductor layer. A gate dielectric and a gate are formed on the semiconductor layer. A spacer is formed around the gate, and the semiconductor layer and the insulator are removed outside the spacer. Recessed source/drain are formed outside the spacer.