摘要:
One embodiment of a method for detecting, sampling, analyzing, and correcting hot spots in an integrated circuit design allows the identification of the weakest patterns within each design layer, the accurate determination of the impact of process drifts upon the patterning performance of the real mask in a real scanner, and the optimum process correction, process monitoring, and RET improvements to optimize integrated circuit device performance and yield. The combination of high speed simulation coupled with massive data collection capability on actual aerial images and/or resist images at the specific patterns of interest provides a complete methodology for optimum RET implementation and process monitoring.
摘要:
A method for identifying process window signature patterns in a device area of a mask is disclosed. The signature patterns collectively provide a unique response to changes in a set of process condition parameters to the lithography process. The signature patterns enable monitoring of associated process condition parameters for signs of process drift, analyzing of the process condition parameters to determine which are limiting and affecting the chip yields, analyzing the changes in the process condition parameters to determine the corrections that should be fed back into the lithography process or forwarded to an etch process, identifying specific masks that do not transfer the intended pattern to wafers as intended, and identifying groups of masks that share common characteristics and behave in a similar manner with respect to changes in process condition parameters when transferring the pattern to the wafer.
摘要:
A layout system is described comprising a layout unit configured to layout cells in a mask design for a semiconductor chip based on library cells for a specified process node; a non-critical path determination unit configured to determine a non-critical path in the semiconductor chip; a cell determination unit configured to determine a group of cells in the mask design that form a part of the non-critical path and determine the corresponding library cell for at least one of the group of cells; a library cell modifying unit configured to modify one or more corresponding library cells to form a corresponding modified library cell; and a cell replacement unit configured to replace a library cell in the group of cells in the mask design that form a part of the non-critical path with the corresponding modified library cell.