Dense three-dimensional correspondence estimation with multi-level metric learning and hierarchical matching

    公开(公告)号:US10832084B2

    公开(公告)日:2020-11-10

    申请号:US16526306

    申请日:2019-07-30

    Abstract: A method for estimating dense 3D geometric correspondences between two input point clouds by employing a 3D convolutional neural network (CNN) architecture is presented. The method includes, during a training phase, transforming the two input point clouds into truncated distance function voxel grid representations, feeding the truncated distance function voxel grid representations into individual feature extraction layers with tied weights, extracting low-level features from a first feature extraction layer, extracting high-level features from a second feature extraction layer, normalizing the extracted low-level features and high-level features, and applying deep supervision of multiple contrastive losses and multiple hard negative mining modules at the first and second feature extraction layers. The method further includes, during a testing phase, employing the high-level features capturing high-level semantic information to obtain coarse matching locations, and refining the coarse matching locations with the low-level features to capture low-level geometric information for estimating precise matching locations.

    Dense correspondence estimation with multi-level metric learning and hierarchical matching

    公开(公告)号:US10679075B2

    公开(公告)日:2020-06-09

    申请号:US16029126

    申请日:2018-07-06

    Abstract: Systems and methods for correspondence estimation and flexible ground modeling include communicating two-dimensional (2D) images of an environment to a correspondence estimation module, including a first image and a second image captured by an image capturing device. First features, including geometric features and semantic features, are hierarchically extract from the first image with a first convolutional neural network (CNN) according to activation map weights, and second features, including geometric features and semantic features, are hierarchically extracted from the second image with a second CNN according to the activation map weights. Correspondences between the first features and the second features are estimated, including hierarchical fusing of geometric correspondences and semantic correspondences. A 3-dimensional (3D) model of a terrain is estimated using the estimated correspondences belonging to the terrain surface. Relative locations of elements and objects in the environment are determined according to the 3D model of the terrain. A user is notified of the relative locations.

    Joint rolling shutter correction and image deblurring

    公开(公告)号:US11599974B2

    公开(公告)日:2023-03-07

    申请号:US17090508

    申请日:2020-11-05

    Abstract: A method for jointly removing rolling shutter (RS) distortions and blur artifacts in a single input RS and blurred image is presented. The method includes generating a plurality of RS blurred images from a camera, synthesizing RS blurred images from a set of GS sharp images, corresponding GS sharp depth maps, and synthesized RS camera motions by employing a structure-and-motion-aware RS distortion and blur rendering module to generate training data to train a single-view joint RS correction and deblurring convolutional neural network (CNN), and predicting an RS rectified and deblurred image from the single input RS and blurred image by employing the single-view joint RS correction and deblurring CNN.

Patent Agency Ranking