Abstract:
Failover methods and systems for a networked storage environment are provided. In one aspect, a read request associated with a first storage object is received, during a replay of entries of a log stored in a non-volatile memory of a second storage node for a failover operation initiated in response to a failure at a first storage node. The second storage node operates as a partner node of the first storage node. The read request is processed using a filtering data structure that is generated from the log prior to the replay and identifies each log entry. The read request is processed when the log does not have an entry associated with the read request, and when the filtering data structure includes an entry associated with the read request, the requested data is located at the non-volatile memory.
Abstract:
Techniques are provided for implementing a persistent key-value store for caching client data, journaling, and/or crash recovery. The persistent key-value store may be hosted as a primary cache that provides read and write access to key-value record pairs stored within the persistent key-value store. The key-value record pairs are stored within multiple chains in the persistent key-value store. Journaling is provided for the persistent key-value store such that incoming key-value record pairs are stored within active chains, and data within frozen chains is written in a distributed manner across distributed storage of a distributed cluster of nodes. If there is a failure within the distributed cluster of nodes, then the persistent key-value store may be reconstructed and used for crash recovery.
Abstract:
Failover methods and systems for a networked storage environment are provided. A filtering data structure and a metadata data structure are generated before starting a replay of a log stored in a non-volatile memory of a second storage node, during a failover operation initiated in response to a failure at a first storage node. The second storage node operates as a partner node of the first storage node to mirror at the log one or more write requests received by the first storage node prior to the failure, and data associated with the one or more write requests. The filtering data structure identifies each log entry and the metadata structure stores a metadata attribute of each log entry. The filtering data structure and the metadata structure are used for providing access to a logical storage object during the log replay from the second storage node.
Abstract:
Failover methods and systems for a networked storage environment are provided. A metadata data structure is generated, before starting a replay of entries at a log stored in a non-volatile memory of a second storage node, during a failover operation initiated in response to a failure at a first storage node. The second storage node operates as a partner node of the first storage node, and the metadata structure stores a metadata attribute of each log entry. Furthermore, the metadata attribute of each log entry is persistently stored. The persistently stored metadata attribute is used to respond to a read request received during the replay by the second storage node, while a write request metadata attribute of a write request is used for executing the write request received by the second storage node during the replay.
Abstract:
Failover methods and systems for a networked storage environment are provided. In one aspect, a read request associated with a first storage object is received, during a replay of entries of a log stored in a non-volatile memory of a second storage node for a failover operation initiated in response to a failure at a first storage node. The second storage node operates as a partner node of the first storage node. The read request is processed using a filtering data structure that is generated from the log prior to the replay and identifies each log entry. The read request is processed when the log does not have an entry associated with the read request, and when the filtering data structure includes an entry associated with the read request, the requested data is located at the non-volatile memory.
Abstract:
A system and method for handling multi-node failures in a disaster recovery cluster is provided. In the event of an error condition, a switchover operation occurs from the failed nodes to one or more surviving nodes. Data stored in non-volatile random access memory is recovered by the surviving nodes to bring storage objects, e.g., disks, aggregates and/or volumes into a consistent state.
Abstract:
Methods, systems, and computer program products for providing deferred replication of recovery information at site switchover are disclosed. A computer-implemented method may include receiving a first copy of logged data for storage volumes of a disaster recovery (DR) partner at a remote site from the DR partner, receiving a request to perform a site switchover from the remote site to the local site, receiving a second copy of logged data for the storage volumes from a local high availability (HA) partner in response to the switchover, and recovering the storage volumes locally by applying one or more of the copies of logged data to corresponding mirrored storage volumes at the local site.
Abstract:
Techniques are provided for implementing a persistent key-value store for caching client data, journaling, and/or crash recovery. The persistent key-value store may be hosted as a primary cache that provides read and write access to key-value record pairs stored within the persistent key-value store. The key-value record pairs are stored within multiple chains in the persistent key-value store. Journaling is provided for the persistent key-value store such that incoming key-value record pairs are stored within active chains, and data within frozen chains is written in a distributed manner across distributed storage of a distributed cluster of nodes. If there is a failure within the distributed cluster of nodes, then the persistent key-value store may be reconstructed and used for crash recovery.
Abstract:
A method and system for co-locating journaling and data storage based on write requests. A write request that includes metadata and data is received from a client. A logical storage unit for storing the metadata and the data is identified. The logical storage unit is divided into a journal partition and a volume partition. The journal partition includes a first log and a second log. Which of the first log and the second log is an active log and which of the first log and the second log is an inactive log are identified. The metadata is recorded in a first location in the active log and the data is recorded in a second location in the active log during a single I/O operation. A reply is sent to the client after the metadata and the data are recorded in the journal partition.
Abstract:
A method and system for co-locating journaling and data storage based on write requests. A write request that includes metadata and data is received from a client. A logical storage unit for storing the metadata and the data is identified. The logical storage unit is divided into a journal partition and a volume partition. The journal partition includes a first log and a second log. Which of the first log and the second log is an active log and which of the first log and the second log is an inactive log are identified. The metadata is recorded in a first location in the active log and the data is recorded in a second location in the active log during a single I/O operation. A reply is sent to the client after the metadata and the data are recorded in the journal partition.