Abstract:
The present disclosure relates to a method, a device and a system for inspecting a moving object based on cosmic rays, pertaining to the field of radiation imaging and safety inspection techniques. The method includes: detecting whether a speed of the inspected moving object is within a preset range; recording a motion trajectory of the moving object with a monitoring device; acquiring information about charged particles in the cosmic rays with a position sensitive detector, the information about charged particles including track information of the charged particles; determining the moving object by matching positions of the motion trajectory and the track information; reconstructing the track of the charged particles according to the information about the charged particles; and recognizing the material inside the moving object based on the track reconstruction.
Abstract:
The present application discloses a detector module, which is arranged on a detector arm, comprising one or a plurality of detector units arranged in a scattered configuration, wherein each of the detector units in the detector module is installed aiming at a beam center of a ray source, thus improving imaging quality and reducing the size of a detector frame drastically.
Abstract:
The present disclosure discloses a method and system for inspecting cargoes. The method comprises: acquiring a transmission image of the inspected cargoes; processing the transmission image to acquire an interested region; extracting features from the interested region, and determining cargo information of the inspected cargoes according to the extracted features; and providing a proposed treatment suggestion of the cargoes based on the determined cargo information and at least a part of information in a manifest. The above solution can facilitate an image judgment person to accurately judge whether the concerned cargoes are allowed to pass.
Abstract:
The present disclosure relates to the technical field of CT detection, and in particular to a CT inspection system and a CT imaging method. The CT inspection system provided by the present disclosure comprises a radioactive source device, a detection device, a rotation monitoring device and an imaging device, wherein the detection device obtains detection data at a frequency that is N times a beam emitting frequency of the radioactive source device; the rotation monitoring device detects a rotation angle of the detection device and transmits a signal to the imaging device each time the detection device rotates by a preset angle; the imaging device determines a rotational position of the detection device each time the radioactive source device emits a beam according to the signal transmitted by the rotation monitoring device and the detection data of the detection device.
Abstract:
The present disclosure provides a low-angle self-swinging type computed tomography (CT) apparatus, which is provided with an X-ray accelerator and a plurality of rows of detectors and is configured to include a slip ring, such that the slip ring with the accelerator and the detectors thereon is capable of performing a single-pendulum reciprocating movement while an objected to be inspected passes through the slip ring, a three dimension CT image of the object is displayed, thereby achieving accurate inspection for large-scale objects, such as van containers.
Abstract:
The present disclosure relates to a method and device for estimating a point spread function. In one implementation, a method includes capturing, by a scanning device, an image by scanning a plurality of rectangle blocks which are same sized and closely arranged, wherein the plurality of rectangle blocks are made of different materials and/or have different mass thicknesses, and an incident direction of rays is perpendicular to a scanning direction and a surface of the plurality of rectangle blocks arranged closely during scanning; obtaining line spread functions for two directions along a length side and a width side of each of the rectangle blocks based on the scanned image, and obtaining standard deviation parameters of the line spread functions; and combining the standard deviation parameters for the two directions to obtain a two dimensional Point Spread Function (PSF) parameter so as to estimate the point spread function.
Abstract:
The present invention relates to a photogrammetry system and method. The photogrammetry system comprises: photographing devices capable of photographing an object at a predetermined time interval; and, a data processing device capable of calculating an actual length of the object or a certain portion on the object according to a length of the object or a certain portion on the object in the images obtained by the photographing devices and a distance of the object in the two images, wherein the object moves at a speed V; the photographing devices photograph the object for two times at a time interval t; the distance of the object in the two images obtained by the two times of photographing is Dp; the length of the object or a certain portion on the object in the images is Lp; and, the actual length L of the object or a certain portion on the object may be obtained by the following formula: L = Lp × Vt Dp .
Abstract:
The present disclosure provides a low-angle self-swinging type computed tomography (CT) apparatus, which is provided with an X-ray accelerator and a plurality of rows of detectors and is configured to include a slip ring, such that the slip ring with the accelerator and the detectors thereon is capable of performing a single-pendulum reciprocating movement while an objected to be inspected passes through the slip ring, a three dimension CT image of the object is displayed, thereby achieving accurate inspection for large-scale objects, such as van containers.
Abstract:
A vehicle-mounted inspection system comprises: a chassis; a rotation mechanism disposed on the chassis; a first ray emission device connected to the rotation mechanism and configured to emit a ray; a first detection device connected to the rotation mechanism and configured to receive the ray emitted by the first ray emission device; and a second ray emission device connected to the rotation mechanism and configured to emit a ray. The rotation mechanism is configured to rotate the first ray emission device, the first detection device and the second ray emission device substantially around an upright axis between a retracted position and an operating position.