摘要:
A radiographic image capturing system includes a radiographic image capture device, a radiation irradiation device, and a control device. The radiographic image capture device is capable of wired and wireless communications, and is capable of fluoroscopic imaging in which radiographic images are successively captured at notified synchronization timings or at a predetermined frame rate. The radiation irradiation device irradiates radiation toward the radiographic image capture device during fluoroscopic imaging, with continuous irradiation or pulse irradiation. The control device includes a wireless communication unit, a wired communication unit, and a controller that, if communication with the radiographic image capture device is performed by the wireless communication unit, prohibits fluoroscopic imaging with pulse irradiation in which the synchronization timings are notified to the radiographic image capture device and radiation is irradiated from the radiation irradiation device in pulses matching the notified synchronization timings.
摘要:
A radiographic image capturing system includes a radiographic image capturing device, a radiation irradiating device, and a control device. The radiographic image capturing device is capable of performing fluoroscopic imaging, and carries out capturing of radiographic images continuously. The radiation irradiating device performs continuous irradiation or pulse irradiation with respect to the radiographic image capturing device at a time of fluoroscopic imaging. The control device has a controller that effects control such that, in a case in which a frame rate of fluoroscopic imaging is low, the radiation irradiating device performs fluoroscopic imaging by the continuous irradiation with respect to the radiographic image capturing device.
摘要:
A radiographic image capture device includes a radiation detector, an application section and a controller. The radiation detector includes plural detection pixels that detect a radiation application state and plural imaging pixels that capture a radiographic image. The application section applies a bias voltage to each of the plural detection pixels and to each of the plural imaging pixels. The controller effects control such that, if the radiation application amount detected by the detection pixels is equal to or greater than a first threshold value during a first state in which the bias voltage is applied to the plural detection pixels, the application section is caused to transition to a second state in which the bias voltage applied to the detection pixels is reduced.
摘要:
There is provided a radiographic imaging apparatus including: a control unit configured as a flat plate shape housing a control section and a power source section; a panel unit configured as a flat plate shape housing a radiation detection panel; and a connection member that rotatably connects one edge portion of each of the control unit and the panel unit so as to adopt two states: a closed state in which one face of the control unit faces one face of the panel unit on the opposite side to an irradiation face irradiated with radiation, and an open state in which the one face of the control unit and the one face of the panel unit on the opposite side are side-by-side in a same flat plane.
摘要:
There is provided a radiographic imaging device including: an imaging panel at which sensor portions, that detect radiation or light converted from radiation, are formed at a detection region, and that captures a radiographic image expressed by radiation or light converted from radiation; a light illuminating section at which light-emitting portions, that can individually illuminate light for erasing residual images, are provided per sectional region obtained by dividing the detection region into the sectional regions; a storage section that stores imaging actual results information that expresses past actual results of imaging carried out by the imaging panel; and a control section that, in accordance with at least one of actual results of imaging and imaging conditions, controls absence/presence of illumination of, light amount of, and illumination time period of light from the respective light-emitting portions of the light illuminating section.
摘要:
A portable radiographic image capturing device includes an image capturing unit, a control unit, and a connecting member. The image capturing unit is formed in the shape of a flat plate, captures a radiographic, and includes a radiation detector that outputs electric signals expressing a captured radiographic image, the image capturing unit being able to capture a radiographic image from either an obverse side or a reverse side of the flat plate. The control unit includes a controller that controls image capturing operations of the radiation detector. The connecting member connects the image capturing unit and the control unit such that both units can be opened and closed between an unfolded state, in which the both units are lined-up next to one another, and a housed state, in which the both units are folded-up so as to be superposed one on another.
摘要:
A radiation image capturing device has: a radiation image capturing section that is adapted to image capturing in a selected operation mode, an image processing section, a power supply section that supplies electric power for driving to the radiation image capturing section, a connection portion that electrically connects to at least one of a power supply device or an image processing device, and a control section. The control section effects control such that, in a case in which an operation mode that generates a predetermined generated heat amount or more is selected and the power supply device is connected to the connection portion, the power supply device is used instead of the power supply section, and, in a case in which an operation mode that generates a predetermined generated heat amount or more is selected and the image processing device is connected to the connection portion, the image processing device is used instead of the image processing section.
摘要:
A portable radiographic imaging device including: a radiation detection panel including optoelectric conversion elements that convert irradiated radiation into an electrical signal; a signal processing substrate performing predetermined signal processing on the input electrical signal; a holding base provided between the radiation detection panel and the signal processing substrate and holding the signal processing substrate; a flexible substrate including a flexed portion, with one end of the flexible substrate being connected to the radiation detection panel and the other end of the flexible substrate being connected to the signal processing substrate; a casing in which the radiation detection panel, the signal processing substrate, the holding base and the flexible substrate are installed; and a contact avoidance portion formed at at least one of the signal processing substrate, the holding base or the casing such that contact of with the flexible substrate is avoided, is provided.
摘要:
A photoelectric conversion substrate includes: plural pixels, each provided with a sensor portion and a switching element that are formed on the substrate, the sensor portion including a photoelectric conversion element that generates charge according to illuminated light, and the switching element reading the charge from the sensor portion, a flattening layer that flattens the surface of the substrate having the switching elements and the sensor portions formed thereon, a conducting member formed over the whole face of the flattening layer; and a connection section that connects the conducting member to ground.
摘要:
There are provided a radiation detector and a radiological image radiographing apparatus capable of improving the quality of an obtained radiological image while suppressing the deterioration of the sensitivity of a phosphor layer according to the cumulative dose of radiation. In the radiation detector, a second scintillator which absorbs lower radiation energy than radiation energy absorbed by a first scintillator and whose deterioration of sensitivity according to the cumulative dose of radiation is larger than that of the first scintillator is provided at the downstream side of the first scintillator in the emission direction of the radiation. In addition, two substrates of a first substrate, which mainly acquires electric charges corresponding to light generated by the first scintillator, and a second substrate, which mainly acquires electric charges corresponding to light generated by the second scintillator, are provided.