摘要:
Degradable polyacetal polymers and functionalized degradable polyacetal polymers have properties favorable for use in pharmaceutical and biomedical applications. The degradable polyacetal polymers are relatively stable at physiological pH with favorable biodistribution profiles, and degrade readily in low pH conditions. Conjugates of the polymers with drugs, especially anticancer drugs, and methods of treatment of cancer.
摘要:
The present disclosure concerns biologically active materials, particularly materials that comprise a biodegradeable polymer linked to a biologically active agent. The disclosure further concerns materials known as polymer-drug conjugates that typically contain a therapeutic agent, for instance a bioactive cytotoxic drug linked to a polymer backbone. The linkage typically is a convalent linkage. However, in some embodiments the disclosure concerns other polymer conjugates including those where the biologically active agent is an imaging agent, such as a tyrosinamide, a diagnostic agent, or a targeting agent, such as biotin.
摘要:
Prodrugs which can be activated by enzymes, are formulated for sequential administration, with enzyme conjugates. Either or each component comprises a polymeric carrier which allows it to be directed preferentially to the target tissue. A new polymer-prodrug conjugate is cleavable by cathepsin-B or othe invention is of particular utility for targeting solid tumours.
摘要:
A polymer-drug conjugate, in which the polymer is the polysaccharide dextrin, linked directly or indirectly to the drug, is effective to deliver the drug to a target site and is biodegradable. The conjugate may be prepared by succinoylating dextrin followed by reaction with the drug or a derivative thereof.
摘要:
A conjugate of a carrier polymer and aziridine ring containing mitomycin (MMC) drug molecules is prepared by coupling the MMC molecules via their aziridine imino groups to spacer groups that terminate in protected amino groups, deprotecting said amino groups, recovering and purifying the spacer-MMC derivatives, and then coupling these derivatives via said deprotected amino groups to the carrier polymer. Alternatively, the MMC may first be treated with an activating agent, e.g. carbodiimidazole, to form an activated MMC derivative which is then coupled directly to spacer groups linked to the carrier polymer.