摘要:
A method for delivering packets in a wireless communications system includes determining a cause of loss for a previously transmitted packet based on a packet acknowledgement corresponding to the previously transmitted packet, the packet acknowledgement including at least one of a wireless loss indicator and a congestion warning indicator for the wireless communications system. The method also includes adjusting a transmission parameter in a packet transmission protocol according to the cause of loss, and retransmitting the previously transmitted packet.
摘要:
Techniques of scheduling data packets are disclosed. For example, such data packet scheduling techniques may be employed to schedule data packets on wired and/or wireless networks. An example embodiment includes techniques for scheduling voice-over-Internet protocol data packets transmitted between a base station and a subscriber station on a WiMAX network.
摘要:
Techniques for managing resources in a point-to-multipoint (P2MP) network are disclosed. In some examples, a root station is adapted to transmit and receive network packets and leaf stations are adapted to transmit and receive the network packets from the root station. An electrical control system can be adapted to adjust a control error toward a zero value and adjust an output toward a steady state. The electrical control system may include feedback to control the root station based, at least in part, on the output of the electrical control system.
摘要:
Technologies are generally described for an enhanced Quantized Congestion Notification (QCN) congestion control approach, referred to as Fair QCN (FQCN) for enhancing fairness of multiple flows sharing link capacity in a high bandwidth, low latency data center network. QCN messages may be fed back to flow sources (e.g., servers) which send packets with a sending rate over their share of the bottleneck link capacity. By enabling the flow sources to regulate their data traffic based on the QCN messages from a congestion control component, the queue length at the bottleneck link may converge to an equilibrium queue length rapidly and TCP throughput performance may be enhanced substantially in a TCP incast circumstance.
摘要:
Technologies are generally described for substantially maximizing capacity in a wavelength division multiplexing (WDM) passive optical network (PON). An “achievable rate region” may be defined as a set containing admissible traffic rates of a given WDM PON system such that a volume of an achievable rate region is proportional to a capacity of the network. Deriving the achievable rate region for a particular network, decisions may be made whether incoming traffic rate can or cannot be achieved for that network. Moreover, the achievable rate region may be used to construct a WDM PON utilizing a minimum number of wavelengths, a minimum number of lasers with narrowest tuning ranges, and a minimum number of receivers, thereby reducing a capital expenditure in building the PON system.
摘要:
An exemplary method of controlling communications includes determining a total congestion window size for a router device. An allocation of at least a portion of the determined total congestion window size to allocated at least one mobile station that communicates with the router device over a wireless link is determined based on the determined total congestion window size. The determined allocation is then reported to a source of a communication intended for the at least one mobile station.
摘要:
Technologies are generally described for network traffic scheduling in a wavelength division multiplexing (WDM) passive optical network (PON). Dynamic wavelength assignment and time allocation in hybrid WDM/TDM PONs with tunable lasers as optical light generators is accomplished by mapping the scheduling into a multi-processor scheduling problem with wavelength channels as machines and ONU requests as jobs. Wavelengths may be considered as parallel identical machines. Taking laser tuning time into consideration preemptive and non-preemptive scheduling with the objective of minimizing the latest job completion time is computed employing a number of heuristic algorithms. The algorithms compute two extreme cases of zero and infinity laser tuning time, respectively. Using the results from these two extreme cases, the heuristic scheduling schemes for the case of arbitrary laser tuning time yield close average latest job completion times for both schedule types.
摘要:
The deterministic packet marking (DPM) method is based on marking packets with the partial address information of ingress interface only. The attack victim is able to recover the complete address(es) information after receiving several packets from a particular attacking host or hosts. The full path is not really essential for the traceback since it can be different for different packets for different reasons.
摘要:
Techniques for partitioning and/or combining at least a portion of an optical network tree including one or more array waveguide gratings (“AWGs”) and fibers in wavelength division multiplexing (“WDM”) passive optical networks (“PON”) with cascaded AWGs are disclosed. Example methods include deriving the optimal positions for the AWGs to minimize fiber cost and then determining the arrangement of cascaded AWGs to minimize the total cost of AWGs and fibers. Determining the arrangement of cascaded AWGs may include recursive partitioning followed by recursive combination. An example recursive partition-combination based algorithm for optimizing a tradeoff between the AWG cost and the fiber cost is disclosed.
摘要:
A method of scheduling tasks for active network measurement includes identifying a first measurement task for measuring a first network parameter and a second measurement task for measuring a second network parameter. It is determined whether there is a conflict between the first measurement task and the second measurement task. A first execution time of the first measurement task and a second execution time of the second measurement task are also determined. A task schedule is generated based at least in part on the first execution time, the second execution time, and whether there is the conflict between the first measurement task and the second measurement task. The task schedule is further generated based at least in part on a color graph.