Abstract:
A method for delivering packets in a wireless communications system includes determining a cause of loss for a previously transmitted packet based on a packet acknowledgement corresponding to the previously transmitted packet, the packet acknowledgement including at least one of a wireless loss indicator and a congestion warning indicator for the wireless communications system. The method also includes adjusting a transmission parameter in a packet transmission protocol according to the cause of loss, and retransmitting the previously transmitted packet.
Abstract:
A method for delivering packets in a wireless communications system includes determining a cause of loss for a previously transmitted packet based on a packet acknowledgement corresponding to the previously transmitted packet, the packet acknowledgement including at least one of a wireless loss indicator and a congestion warning indicator for the wireless communications system. The method also includes adjusting a transmission parameter in a packet transmission protocol according to the cause of loss, and retransmitting the previously transmitted packet.
Abstract:
Technologies are generally described for reducing the from-power-grid energy consumption of a wireless network such as a cellular network over a period of time through cell size adaptations. According to some examples, cell sizes for the base stations may be optimized by decomposing the cell size optimization into two approaches: a multi-stage energy allocation approach and an energy consumption minimization approach. By implementing an energy allocation policy based on available energy type (e.g., from-power grid or renewable) and an approximation technique for the energy consumption minimization, cell size optimization for each base station may be achieved resulting in network-wide enhancement of renewable energy usage vs. from-power-grid energy usage.
Abstract:
Technologies are generally described for reducing overall power consumption of a wireless network such as a cellular network through spectrum trading. According to some examples, spectrum may be shared between primary base stations (PBSs) and secondary base stations (SBSs) to reduce a power consumption of PBSs and increase the spectral efficiency of cellular networks. A PBS may share a portion of its licensed bandwidth with SBSs, to provide data services to primary users (Pus) within SBSs' coverage area. Due to their proximity to the PUs, the SBSs may satisfy the PUs' quality of service (QoS) requirements by utilizing a portion of the allocated bandwidth. Thus, PBSs may reduce their power consumption by offloading some of the PUs to SBSs. Because the SBSs typically use lower power compared to the PBS, the overall power consumption of the network may be reduced as well.
Abstract:
The present invention generally relates to a device for measuring characteristics of polymeric fluids (semi-dilute and concentrated polymer solutions and melts) in extremely strong elongational flows. In one embodiment, the present invention relates to a device for measuring characteristics of polymeric fluids (semi-dilute and concentrated polymer solutions and melts) in extremely strong elongational flows in spinning jets and/or electrified jets. In another embodiment, the present invention relates to a method for determining the elastic modulus and the relaxation time of a polymeric fluid. Also, the present invention enables one to determine and/or measure the primary parameters needed to describe a viscoelastic material.
Abstract:
The present invention includes embodiments that generally relate to methods and devices for control of electrospinning processes. Some embodiments include constant current electrospinning jets. Other embodiments include pressure control using a system of valves in fluid communication with the electrospinning fluid. Still other embodiments include control of one or more physical parameters.
Abstract:
System and method for manufacturing contact. According to an embodiment, the present invention provides a method for manufacturing integrated circuits. The method includes a step for providing a semiconductor substrate. The method also includes a step for defining a plurality of contact regions on the semiconductor substrate. The method further includes a step for forming a plurality of dielectric structures on the plurality of contact regions. Additionally, the method includes a step for forming a plurality of openings on the semiconductor substrate. For example, each of the openings is characterized by at least a depth, a width, and an aspect ratio. Furthermore, the method includes a step for performing deposition within the openings using a first type of material, which includes a titanium material. The method additionally includes a step for performing annealing at a predetermined set of conditions.
Abstract:
The present invention includes embodiments that generally relate to methods and devices for control of electrospinning processes. Some embodiments include constant current electrospinning jets. Other embodiments include pressure control using a system of valves in fluid communication with the electrospinning fluid. Still other embodiments include control of one or more physical parameters.
Abstract:
The present invention relates to structures that contain one or more fiber and/or nanofiber structures where such structures can be formed on a wide variety of structures or surfaces (e.g., asperities, flat surfaces, angled surface, hierarchical structures, etc.). In one embodiment, the present invention relates to a process for forming one or more fibers, nanofibers or structures made therefrom on a wide variety of structures or surfaces (e.g., asperities, flat surfaces, angled surface, hierarchical structures, etc.). In another embodiment, the present invention relates to a process for forming one or more fibers, nanofibers or structures made therefrom on a wide variety of structures or surfaces (e.g., asperities, flat surfaces, angled surface, hierarchical structures, etc.) where such fibers and/or structures are designed to sequester, carry and/or encapsulate one or more substances. In still another embodiment, the present invention relates to structures that contain one or more fiber and/or nanofiber structures on asperities where the nanofiber and/or fiber structures are designed to sequester, carry and/or encapsulate one or more substances.
Abstract:
The present invention relates generally to methods to produce various desired patterns (e.g., coils) via an electrospinning process where such desired patterns possess certain desired properties (e.g., desired electrical properties). In one embodiment, the present invention relates to a method for producing coiled fiber patterns at a rate of one turn of the coil in a set time period (e.g., about one microsecond). In another embodiment, the present invention relates to methods to produce “resonator structures” that are the basic element of artificial dielectrics. In still another embodiment, the present invention relates to methods to produce coils with various specified diameters (e.g., about 10 microns) which can, among other things, enable the production of repeating patterns in a wallpaper-like array. In still yet another embodiment, the present invention relates to methods to hierarchical structures that offer mechanical support for various nanofibers.