Abstract:
According to an example implementation, a method includes: receiving, at an apparatus, information from a node, said information defining a mode of operation for communicating scheduling information; and configuring transmission and reception periods of scheduling information at said apparatus in dependence on the mode of operation.
Abstract:
Two physical layer user terminal capability alternatives are introduced for device-to-device discovery for FDD mode terminals: a full discovery physical layer capability, and a partial discovery physical layer capability. The full discovery physical layer capability corresponds to an alternative where a discovery-capable user terminal has a capability to perform both Discovery_Scan (on an uplink band) and Discovery_Tx (on a downlink band) operations. A Discovery_Tx operation corresponds to transmission of a discovery signal to another user terminal directly over the air. A Discovery_Scan operation corresponds to reception of the discovery signal from another user terminal directly over the air. The partial discovery physical layer capability corresponds to an alternative where the discovery-capable terminal has a capability to perform either Discovery_Scan operation (on the downlink band) or Discovery_Tx (on the uplink band) operation (or both).
Abstract:
A signal modulated according to zero-tail discrete Fourier transform spread orthogonal frequency division multiplexing (ZT DFT-s-OFDM) is received over a channel. The signal is down-sampled into a first sequence including N samples, N corresponding to the number of used subcarriers. The first Nh samples and the last Nt samples are removed from the first sequence, thereby obtaining a second sequence having a length of N-Nh-Nt. The second sequence is correlated with a reference sequence which has a length N-Nh-Nt, and a frequency response of the channel is estimated over the N used subcarriers based on a result of the correlation.
Abstract:
There is provided a method comprising: obtaining, by an apparatus, a first data block, a second data block and a third data block; generating a first signal, wherein a first part of the first signal is generated based on a data of the first data block, and wherein a second part of the first signal is generated based on a data of the second data block, the second part being subsequent in time domain compared with the first part; generating a second signal, wherein a first part of the second signal is generated based on a data of the third data block, and wherein a second part of the second signal is generated based on the data of the second data block, the second part being subsequent in time domain compared with the first part; and transmitting the first and second signals.
Abstract:
Apparatus and method for signalling are provided. The solution comprises reserving resources for communication of a set of nodes (114, 116, 118) organized into one or more scheduling groups having a predetermined group identity, each node in a scheduling group having a unique identity. Scheduling messages are transmitted to all nodes, the messages comprising the group identity designating the scheduling group the message is intended, an information element indicating identity of the node allowed to transmit, a bitmap indicating identities of nodes instructed to receive, and information on parameters needed to transmit and receive data utilizing the resources allocated for communication.
Abstract:
A method comprising: measuring separately co-channel interference and cross-channel interference at an apparatus; and providing, to a node, separate information regarding the co-channel interference and the cross-channel interference.
Abstract:
Apparatus and method for signalling are provided. The solution includes reserving resources for communication of a set of nodes (114, 116, 118) organized into one or more scheduling groups having a predetermined group identity, each node in a scheduling group having a unique identity. Scheduling messages are transmitted to all nodes, the messages including the group identity designating the scheduling group the message is intended, an information element indicating identity of the node allowed to transmit, a bitmap indicating identities of nodes instructed to receive, and information on parameters needed to transmit and receive data utilising the resources allocated for communication.
Abstract:
A technique, including: controlling a radio transceiver to make and receive transmissions according to a radio frame structure that includes consecutive time frames of a predefined duration, wherein each time frame includes a plurality of consecutive sub-frames of a predefined duration, and each sub-frame includes a plurality of sets of time resources, and wherein the plurality of sets of time resources of a sub-frame includes: a first set useable for transmissions in a first direction; a second set useable for transmissions in a second, opposite direction; and a third set that is switchable between transmissions in the first direction and transmissions in the second direction, independently of the first and second sets of time resources in the same sub-frame and independently of other sub-frames in the same radio frame.
Abstract:
Improved adaptation to a frequency band comprising sub-bands is provided by receiving a coding rate of an error correction coding scheme for encoding modulation symbols to be transmitted on sub-bands of a frequency band in radio communications, determining relative radio channel qualities of the sub-bands of the frequency band, and allocating transmission power between the sub-bands at least on the basis of the relative radio channel qualities of the sub-bands and the received coding rate.