Abstract:
In an example embodiment a method, apparatus and computer program product are provided. The method includes causing a screening element in a camera to block wavelengths associated with at least one color in incident light at pre-defined time intervals during an image frame capture. A motion blur is removed from the captured image frame for the at least one color based on the blocking of the wavelengths associated with the at least one color. The method further includes generating a motion deblurred image frame using the captured image frame with the motion blur removed for the at least one color.
Abstract:
In an example embodiment, method, apparatus and computer program product are provided. The method includes facilitating receipt of a deconvolved image including a plurality of component images. A guide image is selected from the component images and a cross-filtering is performed of component images other than the guide image to generate filtered component images. The cross-filtering is performed of a component image by iteratively performing, selecting a pixel and a set of neighboring pixels around the pixel in the guide image, computing a set of weights corresponding to the set of neighboring pixels based at least on spatial differences between the pixel and the set of neighboring pixels, and cross-filtering a corresponding pixel of the pixel in the component image based on the set of weights to generate a filtered corresponding pixel in the component image. The filtered component images form a filtered deconvolved image with reduced chromatic aberration.
Abstract:
In an example embodiment a method, apparatus and computer program product are provided. The method includes facilitating receipt of a light-field image, determining one or more depth levels in the light-field image and generating a plurality of images from the light-field image. The method includes determining one or more registration matrices corresponding to the one or more depth levels between an image and one or more remaining images of the plurality of images. The method includes performing a super-resolution of the image and the one or more remaining images based on the one or more registration matrices to generate a super-resolved image of the image.
Abstract:
In an example embodiment, method, apparatus and computer program product are provided. The method includes facilitating receipt of a plurality of VR contents and a plurality of video contents associated with an event captured by a plurality of VR cameras and a plurality of user camera devices, respectively. Each of the plurality of VR cameras comprises a plurality of camera modules with respective field of views (FOVs) associated with the event. The FOVs of the plurality of user camera devices are linked with respective FOVs of camera modules of the plurality of VR cameras based on at least a threshold degree of similarity between the FOV of the user camera device and the FOV of the camera module. The processor creates an event VR content by combining the plurality of VR contents and the plurality of video contents based on the linking of the FOVs.
Abstract:
In an example embodiment, a method, apparatus and computer program product are provided. The method includes facilitating receipt of a plenoptic image associated with a scene, the plenoptic image including plenoptic micro-images and being captured by a focused plenoptic camera. The method includes generating plenoptic vectors for the plenoptic micro-images of the plenoptic image, where an individual plenoptic vector is generated for an individual plenoptic micro-image. The method includes assigning disparities for the plenoptic micro-images of the plenoptic image. A disparity for a plenoptic micro-image is assigned by accessing a plurality of subspaces associated with a set of pre-determined disparities, projecting a plenoptic vector for the plenoptic micro-image in the plurality of subspaces, calculating a plurality of residual errors based on projections of the plenoptic vector in the plurality of subspaces, and determining the disparity for the plenoptic micro-image based on a comparison of the plurality of residual errors.
Abstract:
In accordance with an example embodiment a method, apparatus and computer program product are provided. The method comprises filtering incident light by an IR cut-off filter to generate filtered light. The IR cut-off filter comprises a plurality of pixels with pass-band characteristics for visible light wavelengths and is configured to perform stop-band attenuation of near infrared (NIR) wavelengths. The stop-band attenuation is configured to vary based on spatial location of pixels within the IR cut-off filter. The filtered light received from the IR cut-off filter is sensed by the image sensor to generate sensed light. A baseband signal and a modulated NIR signal are determined by performing transformation of the sensed light. A NIR spectrum associated with the incident light is determined by demodulating the modulated NIR signal. A visible spectrum associated with the incident light is determined based on the NIR spectrum and the baseband signal.
Abstract:
An apparatus including camera optics; an array of plenoptic camera optics; an image sensor including a plurality of sensels; and a driver configured to cause relative physical movement of at least the camera optics and the array of plenoptic camera optics.