Abstract:
Various embodiments may relate to a process for producing an optoelectronic component. In the process, a carrier is provided. A first electrode is formed upon the carrier. An optically functional layer structure is formed upon the first electrode. A second electrode is formed upon the optically functional layer structure. At least one of the two electrodes is formed by disposing electrically conductive nanowires on a surface on which the corresponding electrode is to be formed, and by heating the nanowires in such a way that they plastically deform.
Abstract:
In various embodiments, an organic optoelectronic component is provided. The organic optoelectronic component may include a first electrode, an organic functional layer structure over the first electrode, and a second electrode over the organic functional layer structure. Optionally, the organic functional layer structure includes a charge carrier pair generation layer structure. At least one of the electrodes and/or the charge carrier pair generation layer structure includes electrically conductive nanostructures, the surfaces of which are at least partially coated with a coating material.
Abstract:
Various embodiments may relate to a component. The component includes an optically active region designed for electrically controllably transmitting, reflecting, absorbing, emitting and/or converting an electromagnetic radiation, and an optically inactive region formed alongside the optically active region, wherein the optically inactive region and/or the optically active region have/has an adaptation structure designed to adapt the value of an optical variable in the optically inactive region to a value of the optical variable in the optically active region.
Abstract:
A component module includes a component holder having a curved upper side, and a radiation-emitting component arranged in a curved shape on the upper side, wherein the component holder includes a heat-distributing region on the upper side, a neutral fiber running inside the component, an adhesive is planar and arranged between the radiation-emitting component and the upper side, and the adhesive fixes the radiation-emitting component on the upper side.
Abstract:
An organic optoelectronic component includes an organic functional layer stack between a first electrode and a second electrode including a light-emitting layer formed to emit radiation during operation of the component; a coupling-out layer arranged above the first electrode and/or the second electrode which is in a beam path of the radiation of the light-emitting layer; and a protective layer above the coupling-out layer, wherein the coupling-out layer includes a structured layer and a planarization layer arranged thereabove and the structured layer has a structured surface structured at least in places, the planarization layer planarizes the structured surface of the structured layer, the protective layer cannot be removed without at least partially destroying the coupling-out layer, and adhesion of the structured layer to the planarization layer is smaller than adhesion of the protective layer to the planarization layer.
Abstract:
A radiation-emitting component is disclosed. Embodiments of the invention relate to a radiation-emitting component with an organic layer stack which is arranged on a substrate. An outcoupling structure is arranged on a substrate face facing the organic layer stack, an additional optical layer is arranged between the substrate and the outcoupling structure, and the additional optical structure has a refractive index which is lower than the refractive index of the substrate, or the additional optical layer forms a mirror which has a selective angle and which only allows light that can be coupled out of the substrate at a substrate boundary surface facing away from the organic layer sequence to pass, the light being generated in the organic layer stack during operation.
Abstract:
A method for producing an organic light-emitting diode and an organic light-emitting diode are disclosed. In an embodiment, the method includes providing a substrate with a continuous application surface, generating multiple adhesion regions on the application surface, the adhesion regions being completely surrounded by the application surface, applying metal nanowires over the entire surface of the application surface, removing the metal nanowires outside of the adhesion regions by a washing process using a solvent such that the remaining metal nanowires completely or partly form a light-permeable electrode of the organic light-emitting diode, and applying an organic layer sequence onto the light-permeable electrode.
Abstract:
A lighting device includes a carrier, in which a laterally extended cavity is formed, a light source arranged alongside the cavity and serving for generating light that propagates from the light source through the cavity, a fluid reservoir for receiving a fluid, and a microfluid pump, which is designed for shifting the fluid received in the fluid reservoir between the fluid reservoir and the cavity.
Abstract:
In one embodiment the organic light-emitting diode includes a substrate having a substrate upper side, an electrically conductive grid structure for a current distribution and an electrically conductive particle layer, which are located at the substrate upper side. The grid structure may be embedded in the particle layer. An organic layer sequence for generating the radiation is located directly on the particle layer. A covering electrode is attached to the organic layer sequence. The particle layer comprises scattering particles having a first average diameter and electrically conductive particles having a smaller second average diameter. The scattering particles are densely packed together with the conductive particles. The particle layer forms, together with the grid structure, a substrate electrode for the organic layer sequence.
Abstract:
A lighting device may include a substrate having a carrier, a first electrical busbar, a second electrical busbar, and an optically functional structure on or above the carrier, wherein the optically functional structure is formed laterally between the first and the second electrical busbar, and a first electrode electrically coupled to the first electrical busbar and/or the second electrical busbar, on or above the carrier, and an organic functional layer structure on or above the first electrode, wherein the organic functional layer structure is formed for converting an electric current into an electromagnetic radiation, and a second electrode on or above the organic functional layer structure. The optically functional structure is formed in such a way that the beam path of the electromagnetic radiation which passes through the substrate and/or the spectrum of the electromagnetic radiation passing through the substrate are/is variable by means of the optically functional structure.