Abstract:
A method of operating an organic light-emitting component having first and second electrodes that have arranged between them an organic functional layer stack having at least one organic light-emitting layer that, during operation, produces light emitted via a luminous area, the first and second electrodes and the organic functional layer stack are in an extensive form, in contact with the first electrode, at each of two opposite edges of the first electrode a respective conductor track is arranged that extends in a longitudinal direction along the respective edge, the two conductor tracks have contact made with them on a same side of the first electrode by a connection element so that during operation there is a voltage drop in each conductor track in the longitudinal direction, which voltage drop brings about a luminous density gradient on the luminous area in a direction following the longitudinal direction.
Abstract:
An optoelectronic component may include a first organic functional layer structure, a second organic functional layer structure, and a charge generating layer structure between the first organic functional layer structure and the second organic functional layer structure. The charge generating layer structure includes a first electron-conducting charge generating layer, and a second electron-conducting charge generating layer. The second electron-conducting charge generating layer is formed from a single substance, and the substance of the first electron-conducting charge generating layer is a substance selected from the group of substances consisting of: HAT-CN, Cu(I)pFBz, NDP-2, NDP-9, Bi(III)pFBz, F16CuPc.
Abstract:
A light-emitting component a first layer stack configured to generate light, at least one additional layer stack configured to generate light, where each of the first layer stack and the at least one additional layer stack are separately drivable from one another and where an auxiliary structure is arranged between the first layer stacks and the at least one additional layer stacks.
Abstract:
The invention relates to an optoelectronic component, the optoelectronic component comprises a light-emitting layer stack, and an electrothermal protection element, which is connected to the layer stack in the component and has a temperature-dependent resistor.
Abstract:
A method for producing a light-emitting device and light-emitting device are disclosed. In an embodiment the method includes providing a carrier layer comprising a substrate, applying a first electrode layer, applying a layer sequence for generating light, applying a second electrode layer and structuring at least one layer for varying an optical thickness in a first region of the light-emitting device differently from the layer in a second region of the light-emitting device, wherein the second region is laterally arranged relative to the first region.
Abstract:
An organic light-emitting device and a method for producing an organic light emitting device are disclosed. In an embodiment the device includes a substrate and at least one layer sequence arranged on the substrate and suitable for generating electromagnetic radiation. The at least one layer sequence includes at least one first electrode surface arranged on the substrate, at least one second electrode surface arranged on the first electrode surface and an organic functional layer stack having organic functional layers between the first electrode surface and the second electrode surface. The organic functional layer stack includes at least one organic light-emitting layer, wherein the at least one organic light-emitting layer is configured to emit light, wherein the organic functional layer stack includes at least one inhomogeneity layer, and wherein a thickness of the at least one inhomogeneity layer varies in a lateral direction.
Abstract:
A light-emitting component a first layer stack configured to generate light, at least one additional layer stack configured to generate light, where each of the first layer stack and the at least one additional layer stack are separately drivable from one another and where an auxiliary structure is arranged between the first layer stacks and the at least one additional layer stacks.
Abstract:
A device is disclosed. In an embodiment the device includes an anode, an organic active layer above the anode, an organic layer sequence above the organic active layer, a metallic layer above the organic layer sequence and a cathode above the metallic layer, wherein the metallic layer includes Yb.
Abstract:
The invention relates to a method for producing an organic light-emitting diode (1) comprising the following steps: providing a carrier (3) for the organic light-emitting diode (1), applying a solution (S) comprising a plurality of different emitter materials (E) to the carrier (1), wherein said emitter materials (E) are each formed by a certain type of organic molecule and have electrical charges that differ from each other, applying an electrical field (F), so that the solution is located in the electrical field (F), and drying the solution (S) into a plurality of emitter layers (20) in an organic layer stack (2), while the electrical field is applied, so that the emitter materials (E) are accommodated separately from each other, each in a certain emitter layer (20) of the organic stack (2).
Abstract:
An organic light-emitting diode includes at least two segments arranged adjacent to one another, a scattering layer that at least partially scatters the light generated in each of the segments, and at least one separating region located in the scattering layer, wherein the separating region has a transmittance for light generated in the segments of at most 20%, the separating region, when viewed in a plan view, is arranged in a transitional region between adjacent segments such that within the scattering layer propagation of light between the segments is suppressed, the segments include organic layer sequences each located between a first electrode and a second electrode, the segments are distant from one another in a direction parallel to the main directions of extension, and the scattering layer directly adjoins the first electrode which is light-transmitting and directly adjoins a transparent layer on a side remote from the first electrode.