Abstract:
There is provided an optical pointing system including at least one reference beacon, an image sensor, a storage unit and a processing unit. The image sensor is configured to capture an image frame containing a beacon image associated with the at least one reference beacon. The storage unit is configured to save image data of at least one object image in the image frame. The processing unit is configured to sequentially process every pixel of the image frame for identifying the object image and real-timely remove or merge the image data, saved in the storage unit, associated with two object images within a pixel range of the image frame thereby reducing the used memory space.
Abstract:
An optical tracking method disclosed in the present invention includes obtaining a continuous image set containing a reference light source during a period, and identifying an image characteristic variation of the continuous image set. The reference light source is set at a constant illuminated mode, and generates a known illumination variation during the period. The optical tracking method further includes comparing the image characteristic variation with the known illumination variation to determine whether a predetermined function is actuated. The predetermined function calculates position information of the reference light source on an image of the continuous image set.
Abstract:
A method of an optical detecting device for synchronizing an exposure timing sequence of an image detector with a light emitting timing sequence of a reference light source is disclosed. The method includes capturing a continued image set according to a predetermined period, analyzing intensity variation of the continued image set, and adjusting the exposure timing sequence of an image detector according to the intensity variation, so as to synchronize the exposure timing sequence of the image detector with the light emitting timing sequence of the reference light source.
Abstract:
An image detecting method, comprising: controlling a synchronizing controller to transmit a first activating signal to a light source controller; controlling the light source controller to control at least one light source to generate a predetermined radiating pattern, and controlling the light source controller to transmit back a first responding signal to the synchronizing controller when the light source controller receives the first activating signal; and controlling an image sensor to start an image detecting when the synchronizing controller receives the first responding signal.
Abstract:
An image determining method for scanning an image and determining specific image pixels of a specific image. The method comprises: determining at least one pixel in a first row having brightness value larger than a threshold value as the specific image pixel; defining a leftmost pixel and a rightmost pixel of the specific image pixel in the first row as a leftmost edge and a rightmost edge of a first specific image range; and defining a second specific image range in a second row of the image, which is next to the first row. Column positions of a leftmost edge and a rightmost edge of the second specific image range are respectively the same with column positions of the leftmost edge and the rightmost edge of the first specific image range. Via this method, the determining for the specific image pixels is more accurate.
Abstract:
A method of an optical detecting device for synchronizing an exposure timing sequence of an image detector with a light emitting timing sequence of a reference light source is disclosed. The method includes capturing a continued image set according to a predetermined period, analyzing intensity variation of the continued image set, and adjusting the exposure timing sequence of an image detector according to the intensity variation, so as to synchronize the exposure timing sequence of the image detector with the light emitting timing sequence of the reference light source.
Abstract:
An interactive imaging system includes an image system and a remote controller. The image system includes at least one reference beacon, a receiving unit and a host. The at least one reference beacon emits light in an emission pattern. The receiving unit is configured to receive a packet data. The host controls an enable time of the at least one reference beacon according to the packet data. The remote controller includes an image sensor and a transmission unit. The image sensor captures the light emitted from the at least one reference beacon at a sampling period. The transmission unit sends the packet data corresponding to the sampling period of the image sensor.
Abstract:
A pointer positioning method of a handheld pointer device, which includes capturing a first image frame containing a reference point to compute a first pointing coordinate according to the image position of the reference point in the first image frame; generating a cursor parameter of a cursor according to the first pointing coordinate; when the handheld pointer device enters a pointer-lock mode, records the first pointing coordinate and positions the cursor at the first pointing coordinate on a display apparatus; when the handheld pointer device exits the pointer-lock mode, captures a second image frame to compute a second pointing coordinate according to the image position of the reference point in the second image frame to obtain a displacement vector between the first and the second pointing coordinates; generating the cursor parameter and controlling the movement of the cursor according to the displacement vector and the first pointing coordinate.
Abstract:
There is provided an optical pointing system including at least one reference beacon, an image sensor, a storage unit and a processing unit. The image sensor is configured to capture an image frame containing a beacon image associated with the at least one reference beacon. The storage unit is configured to save image data of at least one object image in the image frame. The processing unit is configured to sequentially process every pixel of the image frame for identifying the object image and real-timely remove or merge the image data, saved in the storage unit, associated with two object images within a pixel range of the image frame thereby reducing the used memory space.
Abstract:
There is provided an optical pointing system including at least one reference beacon, an image sensor, a storage unit and a processing unit. The image sensor is configured to capture an image frame containing a beacon image associated with the at least one reference beacon. The storage unit is configured to save image data of at least one object image in the image frame. The processing unit is configured to sequentially process every pixel of the image frame for identifying the object image and real-timely remove or merge the image data, saved in the storage unit, associated with two object images within a pixel range of the image frame thereby reducing the used memory space.