Abstract:
A joystick includes a body, a feature identifier and a processor. The body has a lateral portion and a bottom portion connected with each other. The bottom portion is adapted to be pressed, and the lateral portion whereon an identification element is disposed is adapted to support the bottom portion. The feature identifier is disposed under the body and adapted to acquire an identification result about the body. The processor is electrically connected with the feature identifier and adapted to analyze state of the identification element within the identification result for generating a control signal. The feature identifier is an image sensor, and accordingly the identification result is a frame captured by the image sensor.
Abstract:
An interactive imaging system includes an image system and a remote controller. The image system includes at least one reference beacon, a receiving unit and a host. The at least one reference beacon emits light in an emission pattern. The receiving unit is configured to receive a packet data. The host controls an enable time of the at least one reference beacon according to the packet data. The remote controller includes an image sensor and a transmission unit. The image sensor captures the light emitted from the at least one reference beacon at a sampling period. The transmission unit sends the packet data corresponding to the sampling period of the image sensor.
Abstract:
A treadmill includes a base including two rest zones and a running zone arranged between the two rest zones; a running track disposed in the running zone of the base enabling a user to exercise thereon; and a detection module. The detection module includes a light emitter emitting light to cover the two rest zones and the running zone, and at least one light sensor detecting a position and a speed of the user according to a reflected light from the user.
Abstract:
A treadmill and a control method for controlling the treadmill belt thereof are provided. The treadmill includes a treadmill belt, a first sensor, an image sensor, and a controller. The first sensor retrieves a light pattern or the image sensor measures the characteristic properties of the image of the user so as to control the treadmill belt. The light pattern can be generated by a signal member, which can be disposed on a side or both sides of the treadmill belt.
Abstract:
An image detecting method, comprising: controlling a synchronizing controller to transmit a first activating signal to a light source controller; controlling the light source controller to control at least one light source to generate a predetermined radiating pattern, and controlling the light source controller to transmit back a first responding signal to the synchronizing controller when the light source controller receives the first activating signal; and controlling an image sensor to start an image detecting when the synchronizing controller receives the first responding signal.
Abstract:
A joystick includes a body, a feature identifier and a processor. The body has a lateral portion and a bottom portion connected with each other. The bottom portion is adapted to be pressed, and the lateral portion whereon an identification element is disposed is adapted to support the bottom portion. The feature identifier is disposed under the body and adapted to acquire an identification result about the body. The processor is electrically connected with the feature identifier and adapted to analyze state of the identification element within the identification result for generating a control signal. The feature identifier is an image sensor, and accordingly the identification result is a frame captured by the image sensor.
Abstract:
An interactive system includes a display, a processor and a remote controller. The display includes at least one reference beacon for providing light with a predetermined feature. The remote controller includes an image sensor configured to capture an image containing the reference beacon and calculates an aiming coordinate according to an imaging position of the reference beacon in the captured image. The processor calculates a scale ratio of a pixel size of the display with respect to that of the image captured by the image sensor and moves a cursor position according to the scale ratio and the aiming coordinate.
Abstract:
An image detecting method, comprising: controlling a synchronizing controller to transmit a first activating signal to a light source controller; controlling the light source controller to control at least one light source to generate a predetermined radiating pattern, and controlling the light source controller to transmit back a first responding signal to the synchronizing controller when the light source controller receives the first activating signal; and controlling an image sensor to start an image detecting when the synchronizing controller receives the first responding signal.
Abstract:
A hand-held pointing device includes a main body, a processing circuit, a light emitting device and two image sensing devices. The main body has a first surface and a second surface for lying on an operating surface. The two image sensing devices are disposed in the main body and configured to sense first and second images through first and second transparent areas thereof, respectively. The light emitting device, disposed in the main body, is configured to emit a light source through the second transparent area. The processing circuit is configured to determine and operate the hand-held pointing device in a remote controller mode or a mouse mode according to whether the first image contains an image of a reference light source and/or the second image contains an image of the operating surface reflecting the light source. An operation for a hand-held pointing device is also provided.