Abstract:
The present invention relates to an actuator including: a first ionic polymer layer disposed on underside of a first electrode layer; a second ionic polymer layer disposed on top of a second electrode layer; and a porous conducting interlayer disposed between the first ionic polymer layer and the second ionic polymer layer.
Abstract:
A polymer electrolyte is provided, which includes a polymer including an ethylene oxide unit; and a lithium salt, wherein the terminal of the polymer is substituted with one to four functional groups selected from the group consisting of a nitrogen compound functional group and phosphorus compound functional group, and the terminal of the polymer and the one to four functional groups are linked by one selected from the group consisting of a C2 to C20 alkylene linker, a C2 to C20 ether linker, and a C2 to C20 amine linker. A method for preparing the same is also provided.
Abstract:
The present invention relates to an ion exchange membrane and a manufacturing method therefor and, more specifically, to an ion exchange membrane comprising a cross-linked sulfonated triblock copolymer and carbon nanotube, which is utilizable in a redox flow energy storage device, etc. due to high ion conductivity, mechanical strength and ion selectivity. The ion exchange membrane of the present invention has superior ion selectivity and mechanical strength and thus can greatly improve the performance of a fuel battery, etc. when applied thereto.
Abstract:
The present invention relates to a polymer electrolyte with a well-defined cubic symmetry and a preparation method thereof, and more particularly, to a polymer electrolyte with a well-defined cubic symmetry, which exhibits excellent ionic conductivity, and a preparation method thereof.
Abstract:
The present invention relates to an ion exchange membrane and a manufacturing method therefor and, more specifically, to an ion exchange membrane comprising a cross-linked sulfonated triblock copolymer and carbon nanotube, which is utilizable in a redox flow energy storage device, etc. due to high ion conductivity, mechanical strength and ion selectivity. The ion exchange membrane of the present invention has superior ion selectivity and mechanical strength and thus can greatly improve the performance of a fuel battery, etc. when applied thereto.
Abstract:
The present invention relates to a new method of synthesizing two-dimensional polyaniline (PANI) nanosheets using ice as a removable hard template. The method comprises polymerizing aniline on an ice surface. The synthesized PANI nanosheets show distinctly high current flows of 5.5 mA at 1 V and a high electrical conductivity of 35 S/cm, which mark a significant improvement over previous values on other PANIs reported over the past decades. These improved electrical properties of the PANI nanosheets are attributed to the long-range ordered edge-on π-stacking of the quinoid ring, ascribed to the ice surface-assisted vertical growth of PANI. The PANI nanosheet can be easily transferred onto various types of substrates via float-off from the ice surfaces. In addition, PANI can be patterned into any shape using predetermined masks, and this is expected to facilitate the eventual convenient and inexpensive application of conducting polymers in versatile electronic device forms.
Abstract:
The present invention relates to an anode active material for a lithium-polymer battery having high capacity and high rapid charge/discharge characteristics, and a lithium-polymer battery using the same, and more specifically, to: a non-carbonaceous nanoparticle/carbon composite anode material using no binder; a lithium-polymer battery having high capacity and high rapid charge/discharge characteristics using the same; and a preparation method thereof. According to the present invention, the lithium-polymer secondary battery comprises an anode active material prepared by carbonizing a composite in which polymer particles comprising non-carbonaceous nanoparticles are dispersed in a polymer resin. According to the present invention, the anode active material allows non-carbonaceous nanoparticles to be dispersed in and fixed to a carbonized body even without a binder.