Abstract:
The present invention relates to a highly conductive electrolyte comprising an ionic liquid and to a polymer electrolyte membrane using same, and more particularly, to a highly conductive polymer electrolyte membrane impregnated with a heterocyclic diazole-based ionic liquid and to a method for manufacturing same. The present invention relates to a polymer electrolyte thin film comprising an ionic liquid based on an imidazole compound represented by chemical formula (1), wherein R1 is an alkyl having a carbon number of 1 to 8 and R2 is hydrogen or an alkyl having a carbon number of 1 to 8.
Abstract:
The present invention relates to a conductive two-dimensional polyaniline (PANT) nanosheets template. The method comprises polymerizing aniline on an ice surface. The PANI nanosheets show distinctly high current flows of 5.5 mA at 1 V and a high electrical conductivity of 35 S/cm, which mark a significant improvement over previous values on other PANIs reported over the past decades. These improved electrical properties of the PANI nanosheets are attributed to the long-range ordered edge-on π-stacking of the quinoid ring, ascribed to the ice surface-assisted vertical growth of PANI. The PANI nanosheet can be easily transferred onto various types of substrates via float-off from the ice surfaces. In addition, PANI can be patterned into any shape using predetermined masks, and this is expected to facilitate the eventual convenient and inexpensive application of conducting polymers in versatile electronic device forms.
Abstract:
The present invention relates to a highly conductive electrolyte comprising an ionic liquid and to a polymer electrolyte membrane using same, and more particularly, to a highly conductive polymer electrolyte membrane impregnated with a heterocyclic diazole-based ionic liquid and to a method for manufacturing same. The present invention relates to a polymer electrolyte thin film comprising an ionic liquid based on an imidazole compound represented by chemical formula (1), wherein R1 is an alkyl having a carbon number of 1 to 8 and R2 is hydrogen or an alkyl having a carbon number of 1 to 8:
Abstract:
The present disclosure provides a polymer electrolyte membrane chemically bonded with an ionic liquid. More particularly, the present disclosure provides a polymer electrolyte membrane chemically bonded with an ionic liquid by reacting the ionic liquid with a novel polymer chain terminal. The polymer electrolyte membrane described herein has a high hydrogen ionic conductivity, even in a high-temperature and anhydrous environment. Additionally, the membrane displays electro-chemical and thermal stability. Moreover, the polymer electrolyte membrane may also be applied to a high-temperature and dry-out bio fuel cell.
Abstract:
A polymer electrolyte including a poly(ethylene oxide) (PEO) containing polymer; and a lithium salt, wherein a terminal of the poly(ethylene oxide) containing polymer is substituted with a sulfur compound functional group, a nitrogen compound functional group or a phosphorus compound functional group, and a method for preparing the same and a battery containing the same.
Abstract:
The present invention relates to a new method of synthesizing two-dimensional polyaniline (PANI) nanosheets using ice as a removable hard template. The method comprises polymerizing aniline on an ice surface. The synthesized PANI nanosheets show distinctly high current flows of 5.5 mA at 1 V and a high electrical conductivity of 35 S/cm, which mark a significant improvement over previous values on other PANIs reported over the past decades. These improved electrical properties of the PANI nanosheets are attributed to the long-range ordered edge-on π-stacking of the quinoid ring, ascribed to the ice surface-assisted vertical growth of PANI. The PANI nanosheet can be easily transferred onto various types of substrates via float-off from the ice surfaces. In addition, PANI can be patterned into any shape using predetermined masks, and this is expected to facilitate the eventual convenient and inexpensive application of conducting polymers in versatile electronic device forms.
Abstract:
An electroactive actuator includes a polymer electrolyte and an electrode configured to apply an electric field to the polymer electrolyte, the polymer electrolyte includes a self-assembled block copolymer including a conductive block and a non-conductive block, a compound to form a single ion conductor with the self-assembled block copolymer, and a zwitterion. A mechanical device including the electroactive actuator and a polymer electrolyte are also disclosed.
Abstract:
The present invention relates to a new method of synthesizing two-dimensional polyaniline (PANI) nanosheets using ice as a removable hard template. The method comprises polymerizing aniline on an ice surface. The synthesized PANI nanosheets show distinctly high current flows of 5.5 mA at 1 V and a high electrical conductivity of 35 S/cm, which mark a significant improvement over previous values on other PANIs reported over the past decades. These improved electrical properties of the PANI nanosheets are attributed to the long-range ordered edge-on n-stacking of the quinoid ring, ascribed to the ice surface-assisted vertical growth of PANI. The PANI nanosheet can be easily transferred onto various types of substrates via float-off from the ice surfaces. In addition, PANI can be patterned into any shape using predetermined masks, and this is expected to facilitate the eventual convenient and inexpensive application of conducting polymers in versatile electronic device forms.
Abstract:
The present invention relates to a humidity sensor, and more particularly, to a resistance film-type real-time chromogenic humidity sensor produced with a polyelectrolyte thin film. The humidity sensor according to the present invention is a chromogenic hygrometer in which a polyelectrolyte nano thin film that absorbs moisture is formed on a reflective layer, and the nano thin film varies terms of color and electrical resistance as moisture is absorbed and the thickness varies. The hygrometer according to the present invention is a dual-function hygrometer, the color and resistance of which vary. Provided is the chromogenic hygrometer in which the sensor made using a PSS-b-PMB thin film varies in color between purple, blue, green, yellow, orange, and red according to humidity at a very high response speed of within one minute.
Abstract:
The present disclosure provides a polymer electrolyte membrane chemically bonded with an ionic liquid. More particularly, the present disclosure provides a polymer electrolyte membrane chemically bonded with an ionic liquid by reacting the ionic liquid with a novel polymer chain terminal. The polymer electrolyte membrane described herein has a high hydrogen ionic conductivity, even in a high-temperature and anhydrous environment. Additionally, the membrane displays electro-chemical and thermal stability. Moreover, the polymer electrolyte membrane may also be applied to a high-temperature and dry-out bio fuel cell.