Abstract:
The coated active material of the present disclosure includes an active material and a coating layer coating at least a part of the surface of the active material. The coated active material has a supernatant transmittance of greater than 64% and less than 93%. The supernatant transmittance is a transmittance of light with a wavelength of 550 nm measured for a supernatant liquid obtained by dispersing and precipitating the coated active material in a solvent. The supernatant liquid is placed in a quartz cell with a 10 mm optical path length and devoted to measurement of the transmittance.
Abstract:
A coated active material including: a positive electrode active material; a second coating layer; and a first coating layer outside the second coating layer, in which a percentage of change from S1 to S2 is −78.0% or greater and −15.0% or less and/or a percentage of change from S3 to S4 is −77.0% or greater and −12.0% or less, where S1 is a sum of dV/dD over a range of pore diameters of 2 nm to 100 nm of the active material coated with the second coating layer; S2 is a sum of dV/dD over a range of pore diameters of 2 nm to 100 nm of the coated active material; S3 is dV/dD at a pore diameter of 3 nm of the active material coated with the second coating layer; and S4 is dV/dD at a pore diameter of 3 nm of the coated active material.
Abstract:
The present disclosure provides a negative electrode material that can improve the cycle characteristics of a battery. The negative electrode material according to the present disclosure contains a reduced form of a solid electrolyte material. The solid electrolyte material is denoted by Formula (1): LiαMβXγ. Herein, in Formula (1), each of α, β, and γ is a value greater than 0, M represents at least one element selected from the group consisting of metal dements except Li and semimetals, and X represents at least one dement selected from the group consisting of F, Cl, Br, and I.
Abstract:
Provided is a battery having further improved charging/discharging efficiency. The battery comprises a positive electrode, a negative electrode, and an electrolyte layer provided between the positive electrode and the negative electrode. The electrolyte layer includes a first electrolyte layer and a second electrolyte layer. The second electrolyte layer is provided between the first electrolyte layer and the negative electrode. The first electrolyte layer includes a first solid electrolyte material. The second electrolyte layer includes a second solid electrolyte material that is a material different from the first solid electrolyte material. The first solid electrolyte material includes Li, M, and X and does not include sulfur. M includes at least one selected from the group consisting of metalloid elements and metal elements other than Li. X is at least one selected from the group consisting of Cl, Br, and I. The reduction potential with regard to lithium of the second solid electrolyte material is lower than the reduction potential with regard to lithium of the first solid electrolyte material.
Abstract:
Provided is a battery comprising a cathode, an anode, and an electrolyte layer. The electrolyte layer includes a first electrolyte layer and a second electrolyte layer. The first electrolyte layer includes a first solid electrolyte material. The second electrolyte layer includes a second solid electrolyte material which is different from the first solid electrolyte material. The first solid electrolyte material includes lithium, at least one kind selected from the group consisting of metalloid elements and metal elements other than lithium, and at least one kind selected from the group consisting of chlorine and bromine. The first solid electrolyte material does not include sulfur.
Abstract:
A battery module includes a first liquid battery and a first solid battery. The first liquid battery is a unit cell. The first solid battery is a unit cell that has a larger volume than a volume of the first liquid battery.
Abstract:
An active material of a lithium ion secondary battery includes a composition represented by W(x)Me1(z1)Me2(z2) . . . Men(zn)O2 (where x+z1+z2+ . . . +zn=1, n is an integer of 1 or more, and 0
Abstract:
A positive electrode material includes a positive electrode active material, a coating layer, and a second solid electrolyte. The coating layer contains a first solid electrolyte and coats at least a portion of a surface of the positive electrode active material. The first solid electrolyte contains Li, Ti, M, and X, where M is at least one selected from the group consisting of metalloid elements and metal elements other than Li or Ti, and X is at least one selected from the group consisting of F, Cl, Br, and I. The second solid electrolyte is in indirect contact with the positive electrode active material with the coating layer disposed therebetween. A ratio of a volume of the first solid electrolyte to a total volume of the first solid electrolyte and the second solid electrolyte is greater than or equal to 4% and less than or equal to 45%.
Abstract:
A positive electrode material includes a positive electrode active material, a solid electrolyte, and an organic solvent. The solid electrolyte contains Li, M, O, and X. M is at least one selected from the group consisting of Ta and Nb. X is at least one selected from the group consisting of F, Cl, Br, and I. The organic solvent has a boiling point of less than or equal to 212° C.
Abstract:
A positive electrode material includes a positive electrode active material, a first solid electrolyte, and a second solid electrolyte. The first solid electrolyte contains Li, Zr, M, and X. M is at least one selected from the group consisting of metalloid elements and metal elements other than Li. X is at least one selected from the group consisting of F, Cl, Br, and I. The second solid electrolyte has a different composition than the first solid electrolyte. A ratio of a volume of the first solid electrolyte to a total volume of the first solid electrolyte and the second solid electrolyte is greater than or equal to 3% and less than or equal to 60%.