Abstract:
A range-information acquiring apparatus includes a light source, an image sensor, a control circuit, and a signal processing circuit. The control circuit causes the light source to emit first light toward a scene and subsequently emit second light toward the scene, the first light having a first spatial distribution, the second light having a second spatial distribution. The control circuit causes at least a portion of plural photodetector elements of the photodetector device to detect first reflected light and second reflected light in the same exposure period, the first reflected light being caused by reflection of the first light from the scene, the second reflected light being caused by reflection of the second light from the scene. The signal processing circuit generates range data based on photodetection data output from the photodetector elements of the photodetector device.
Abstract:
The present disclosure provides a technique which makes it possible to evaluate a state of a cell aggregation of one or more spheroids. In the culture state determination device according to the present disclosure, a plurality of light sources sequentially illuminate a plurality of cell aggregations put on an image sensor. The image sensor acquires captured images of the plurality of the cell aggregations each time when the plurality of the light sources illuminate the plurality of the cell aggregations. Control circuitry extracts a region including an image of the cell aggregation in the captured image; generates three-dimensional image information of the region using a plurality of the captured images; extracts an outer shape of the cell aggregation and a cavity part inside the cell aggregation using the three-dimensional image information; calculates a first volume that is a volume based on the outer shape of each of the cell aggregation and a second volume that is a volume of the cavity part based on the cavity part of each of the cell aggregation in the three-dimensional image information; and determines a culture state of the cell aggregations using the first volume and the second volume.
Abstract:
An image generation apparatus includes first and second light sources, an image sensor, a mask, and a processing circuit. The image sensor acquires a first image when the first light source is energized and acquires a second image when the second light source is energized. The processing circuit obtains a pixel value based on a direct light component or a pixel value based on a component other than the direct light component corresponding to a focal point by using pixel values of first pixel regions of the first image, pixel values of second pixel regions of the second image, the ratios of the direct light and the light other than the direct light from the first light source, and the ratios of the direct light and the light other than the direct light from the second light source and generates a cross-sectional image of a substance on the focal plane.
Abstract:
A socket includes a first base member that includes a module mount unit allowing a module including an imaging device and an object to be placed thereon and an electric connector that electrically connects the imaging device to an external apparatus, a second base member having an opening, and an engagement unit that causes the first base member to be engaged with the second base member under a condition that the module placed on the module mount unit is sandwiched by the first and second base members. When the first base member is engaged with the second base member by the engagement unit under a condition that the module placed on the module mount unit is sandwiched by the first base member and the second base member, the electric connector is electrically connected to the imaging device, and the object receives illumination light from a light source through the opening.
Abstract:
An apparatus generates motor function estimation information by performing a process including calculating, using a sensor value of a subject, a feature vector corresponding to a feature value of a feature in a time segment, acquiring a first weight vector using the feature vector and a motor ability value of the subject, calculating a gradient vector with respect to the feature vector, determining a new time segment in the predetermined time period and a new feature value based on the new time segment, calculating, using the sensor value, a feature candidate vector corresponding to a feature value of the new feature in the new time segment, determining a feature candidate vector satisfying a predetermined condition associated with a gradient vector based on a difference between the feature candidate vector and the feature vector, and correcting the first weight vector to a second weight vector using the feature candidate vector.
Abstract:
An image generating apparatus is provided with: first and second light sources that illuminate a material; an image sensor on which the material is disposed; a mask which includes a light-transmitting part that transmits light and a light-blocking part that blocks light, and which is positioned between the image sensor and the first and second light sources; and a light and dark image processing unit. The image sensor acquires first and second images of the material when illuminated by the first and second light sources, respectively. The light and dark image processing unit derives a difference between a luminance value of a pixel included in the first image and a luminance value of a pixel included in the second image at the same position as the pixel included in the first image, and thereby generates a third image of the material.
Abstract:
A learning apparatus includes at least one memory and at least one circuit. The circuit (a) obtains a first neural network that has learned by using source learning data and obtains target learning data, the target learning data including a plurality of first data items each of which is given a first label and a plurality of second data items each of which is given a second label, (b) obtains a plurality of first output vectors by inputting the plurality of first data items to a second neural network and obtains a plurality of second output vectors by inputting the plurality of second data items to the second neural network, and (c) generates a first relation vector corresponding to the first label by using the plurality of first output vectors and generates a second relation vector corresponding to the second label by using the plurality of second output vectors.
Abstract:
An image output device according to the present disclosure includes: an image acquisition unit that acquires an image with a first resolution; a high-resolution image acquisition unit that acquires an image with a second resolution, being an image of higher resolution than the image with the first resolution; an enlargement input unit that accepts input of an enlargement ratio; a determination unit that determines whether or not an evaluation score determined based on the accepted enlargement ratio is higher than a certain value; and a transmission unit that transmits the image with the second resolution if the evaluation score is determined to be higher than the certain value, and does not transmit the image with the second resolution if the evaluation score is determined not to be higher than the certain value.
Abstract:
An image acquisition device according to the present disclosure includes a lighting system and an irradiation direction decision section. In a module, a subject and an imaging element are integrally formed. The lighting system sequentially irradiates the subject with illumination light in a plurality of different irradiation directions based on the subject such that the illumination light transmitted through the subject is incident on the imaging element. The module acquires a plurality of images according to the plurality of different irradiation directions. Before the plurality of images are acquired according to the plurality of different irradiation directions, the irradiation direction decision section decides the plurality of different irradiation directions based on a difference between a first preliminary image and a second preliminary image. The first preliminary image is acquired when the subject is irradiated with first illumination light in a first irradiation direction, and the second preliminary image is acquired when the subject is irradiated with second illumination light in a second irradiation direction.
Abstract:
An image processing apparatus includes a divider that generates a plurality pieces of third image information on the basis of a plurality of pieces of first image information and a plurality of pieces of second image information, a determiner that determines, on the basis of information regarding a sample, a filter to be used for the plurality of pieces of third image information, and a processor that deconvolutes each of the plurality of pieces of third image information using the determined filter. An image sensor that has received first resulting light emitted from a sample that has received first light emitted from a first angle outputs the plurality of pieces of first image information. The image sensor that has received second resulting light emitted from the sample that has received second light emitted from a second angle outputs the plurality of pieces of second image information.