摘要:
A method of regulating data flow in a wireless communication network includes: collecting data regarding dynamic loading of sector-carrier pairs (pilots) in communication sectors of the wireless communication network; obtaining data rates for data flows of the pilots to access terminals within the wireless communication network; determining one or more pilots to use for conveying data in the wireless communication network based on the data rates and the dynamic loading; and altering data flow over the pilots by at least one of changing a data rate over at least one of the pilots or changing a combination of pilots used by the wireless communication network for conveying data to increase total data flow.
摘要:
Briefly, in accordance with one embodiment, a method of transmitting signals is provided. Signal waveforms are transmitted from at least two respective sectors. The at least two respective sectors are from at least two different sets of a superset of sectors. The transmitted signal waveforms include signal waveforms at least nearly mutually orthogonal at least along a particular signal dimension. An advantage of such an embodiment, for example, is reduced signal interference.
摘要:
Briefly, in accordance with one embodiment, a method of transmitting signals is provided. Signal waveforms are transmitted from at least two respective sectors. The at least two respective sectors are from at least two different sets of a superset of sectors. The transmitted signal waveforms include signal waveforms at least nearly mutually orthogonal at least along a particular signal dimension. An advantage of such an embodiment, for example, is reduced signal interference.
摘要:
Briefly, in accordance with one embodiment, a method of transmitting signals is provided. Signal waveforms are transmitted from at least two respective sectors. The at least two respective sectors are from at least two different sets of a superset of sectors. The transmitted signal waveforms include signal waveforms at least nearly mutually orthogonal at least along a particular signal dimension. An advantage of such an embodiment, for example, is reduced signal interference.
摘要:
Briefly, in accordance with one embodiment, a method of transmitting signals is provided. Signal waveforms are transmitted from at least two respective sectors. The at least two respective sectors are from at least two different sets of a superset of sectors. The transmitted signal waveforms include signal waveforms at least nearly mutually orthogonal at least along a particular signal dimension. An advantage of such an embodiment, for example, is reduced signal interference.
摘要:
Techniques for generating and transmitting packets on multiple links in a wireless communication system are described. In one aspect, a transmitter generates new packets for the multiple links based on the likelihood of each link being available. The transmitter determines the likelihood of each carrier being available based on whether or not there is a pending packet on that carrier and, if yes, the number of subpackets sent for the pending packet. The transmitter generates new packets such that packets for links progressively less likely to be available contain data units with progressively higher sequence numbers. The transmitter determines whether each link is available and sends a packet on each link that is available. In another aspect, the transmitter generates and sends new packets in a manner to ensure in-order transmission. In one design, the transmitter generates new packets for each possible combination of links that might be available.
摘要:
Techniques for generating and transmitting packets on multiple links in a wireless communication system are described. In one aspect, a transmitter generates new packets for the multiple links based on the likelihood of each link being available. The transmitter determines the likelihood of each carrier being available based on whether or not there is a pending packet on that carrier and, if yes, the number of subpackets sent for the pending packet. The transmitter generates new packets such that packets for links progressively less likely to be available contain data units with progressively higher sequence numbers. The transmitter determines whether each link is available and sends a packet on each link that is available. In another aspect, the transmitter generates and sends new packets in a manner to ensure in-order transmission. In one design, the transmitter generates new packets for each possible combination of links that might be available.
摘要:
The present disclosure describes methods and apparatuses for improved transport block decoding in devices capable of wireless communication, which may include user equipment and network entities. For example, the present disclosure presents methods and apparatuses for decoding a code block from a plurality of code blocks corresponding to a transport block, obtaining a reliability indicator that identifies a reliability of the decoding of the code block, comparing the reliability indicator to a reliability threshold, and determining whether to decode a subsequent code block from the plurality of code blocks based on the comparing. Furthermore, these methods and apparatuses may include determining not to decode at least one subsequent code block of the transport block where the comparing indicates that the reliability indicator is less than the reliability threshold. As such, device power is not unnecessarily consumed by decoding likely superfluous code blocks.
摘要:
Certain embodiments provide methods that may allow for improvements in performance and power consumption by terminating the turbo decoding process early when one of at least two test criterion is satisfied in communications systems, including UMTS, WCDMA, and TD-DCMA.
摘要:
Methods and apparatuses to power off a modem receiver or components of the receiver at a time prior to the end of the frame based on data in the frame being received and properly decoded before the end of the frame. In an aspect, the apparatuses and methods provide power saving in a wireless device, and include receiving data within a frame at a user equipment, determining whether all payload packet data has been correctly decoded prior to an end of the frame, and powering down a receiver component for a portion of a remainder of the frame in response to determining that all payload packet data has been correctly decoded and where a first time period to a next scheduled overhead hit transmission period of a slot in the frame is greater than a second time period corresponding to a warm-up period for the receiver component.