Abstract:
There is provided a displacement detection device including an image sensor, a light source, a light control unit and a processing unit. The image sensor captures image frames at a sampling frequency. The light source provides, in a speed mode, light for the image sensor in capturing the image frames. The light control unit controls the light source with the speed mode to turn on at a lighting frequency or to turn off serially. The processing unit calculates a displacement according to the image frames captured when the light source turns on to be served as an estimated displacement for an interval during which the light source turns off. There is further provided an operating method of a displacement detection device.
Abstract:
A displacement detection device includes a light source, an image sensor and a processing unit. The light source is configured to illuminate a work surface. The image sensor is configured to capture reflected light from the work surface and to output an image frame. The processing unit is configured to select a window of interest in the image frame having a maximum image feature and to calculate a displacement of the displacement detection device according to the window of interest.
Abstract:
A controlling method for an electronic apparatus is disclosed. The method comprises: detecting a location for vision of an eye on a display of the electronic apparatus; controlling the electronic apparatus to operate in a first mode if a time period for the vision stops on an objective on the display is not larger than a predetermined time period; and controlling the electronic apparatus to operate in a second mode if the time period for the vision stops on an objective on the display is larger than the predetermined time period. The electronic apparatus detects at least turning operation for a head comprising the eye and performs corresponding operation according to the turning operation in the second mode.
Abstract:
A portable interactive electronic apparatus includes a shell and a touch control panel having a cover plate. The cover plate includes a first surface area and a second surface area, and the touch control panel is positioned on the shell. The first surface area is utilized for sensing a touch of a user's finger, and the second surface area is utilized for leading liquid components out from the cover plate.
Abstract:
Glasses with gesture recognition function include a glasses frame and a gesture recognition system. The gesture recognition system is disposed on the glasses frame and configured to detect hand gestures in front of the glasses thereby generating a control command. The gesture recognition system transmits the control command to an electronic device to correspondingly control the electronic device.
Abstract:
Glasses with gesture recognition function include a glasses frame and a gesture recognition system. The gesture recognition system is disposed on the glasses frame and configured to detect hand gestures in front of the glasses thereby generating a control command. The gesture recognition system transmits the control command to an electronic device to correspondingly control the electronic device.
Abstract:
There is provided an optical navigation device including an image sensor, a processing unit, a storage unit and an output unit. The image sensor is configured to successively capture images. The processing unit is configured to calculate a current displacement according to the images and to compare the current displacement or an accumulated displacement with a threshold so as to determine an outputted displacement. The storage unit is configured to save the accumulated displacement. The output unit is configured to output the outputted displacement with a report rate.
Abstract:
A portable interactive electronic apparatus includes a shell and a touch control panel having a cover plate. The cover plate includes a first surface area and a second surface area, and the touch control panel is positioned on the shell. The first surface area is utilized for sensing a touch of a user's finger, and the second surface area is utilized for leading liquid components out from the cover plate.
Abstract:
A device for determining a gesture includes a light emitting unit, an image sensing device and a processing circuit. The light emitting unit emits a light beam. The image sensing device captures an image of a hand reflecting the light beam. The processing circuit obtains the image and determines a gesture of the hand by performing an operation on the image; wherein the operation includes: selecting pixels in the image having a brightness greater than or equal to a brightness threshold; dividing the selected pixels; and determining the gesture of the hand according to a number of group of divided pixels. A method for determining a gesture and an operation method of the aforementioned device are also provided.
Abstract:
A device for determining a gesture includes a light emitting unit, an image sensing device and a processing circuit. The light emitting unit emits a light beam. The image sensing device captures an image of a hand reflecting the light beam. The processing circuit obtains the image and determine a gesture of the hand by performing an operation on the image; wherein the operation includes: selecting pixels in the image having a brightness greater than or equal to a brightness threshold; sorting the selected pixels; selecting a first predetermined percentage of pixels from the sorted pixels; dividing the adjacent pixels in the first predetermined percentage of pixels into a same group; and determining the gesture of the hand according to the number of groups of pixels. A method for determining a gesture and an operation method of the aforementioned device are also provided.