Abstract:
An optical pickup, photodetector, and optical drive adopting the optical pickup are provided. The optical pickup may include a light emitting system having a plurality of light sources corresponding to a plurality of mediums a light receiving system including a photodetector for converting light reflected from a medium into an electrical signal. The photodetector may include first and second light receiving sensors corresponding to the plurality of mediums, each of the first and second light receiving sensors comprising a plurality of regions, each region comprising a plurality of sectors. The plurality of regions of the first and second light receiving sensors may include shared sectors that are shared by the first and second light receiving sensors and exclusive sectors that are exclusively used in the first light receiving sensor or the second light receiving sensor.
Abstract:
An apparatus and method for detecting beam power generated by a plurality of light sources, using a single device. The apparatus includes a light-receiving unit that receives the beam power generated by one of a plurality of light sources, and an amplifying unit that selects a gain, amplifies the beam power received by the light-receiving unit according to the selected gain, and outputs the beam power amplified as a detected beam power. According to the apparatus and method, received beam power (or amplification gain) is amplified by a gain determined according to the characteristics of the respective light sources. Thus, it is possible to provide the detected beam power in consideration of a sufficient dynamic range for the each light source, thereby realizing effective APC.
Abstract:
An optical pickup includes a light source module in which first and second light sources that emit first and second light beams of different wavelengths are integrated into a single package, an objective lens that focuses the first and second light beams to form a light spot on a recording surface of a recording medium, a light path changer that changes a path along which the first and second light beams propagate, a photodetector that receives the first and second light beams entered via the objective lens and the light path changer and detects an information signal and/or error signal, and an optical element disposed on a path along which the first and second light beams propagate to act as a lens with respect to only one of the first and second light beams so as to correct a position difference along a light propagation direction between the first and second light sources. Accordingly, it possible to correct a position difference along a light propagation axis between the two light sources in the light source module. Obtaining the same light propagation axis is made possible by using the optical element to make the two light propagation axes coincidental or by using a separate optical element to perform this function. This allows the optical pickup to be used for recording as well as for reproducing.
Abstract:
A compatible type optical pickup using a wedge type beam splitter that can record and/or reproduce information on/from optical recording media having different formats. The compatible type optical pickup includes: a first light source that generates and emits a first light beam of a predetermined wavelength; a second light source that generates and emits a second light beam having a different wavelength from that of the first light beam; a wedge type beam splitter disposed in an optical path between the first and second light sources, which changes the traveling paths of the first and second light beams to allow the first and second light beams to travel along the same optical path and minimizes aberrations; a main beam splitter disposed in an optical path between the wedge type beam splitter and an optical recording medium, which changes the traveling paths of incident light beams; an objective lens that focuses the first and second light beams entered via the main beam splitter onto the optical recording medium; and a main photodetector that receives the first and second light beams reflected from the optical recording medium detects an information signal and an error signal.
Abstract:
A method and apparatus for compensating tilt. The tilt compensation method includes: obtaining one of a jitter best, an RF envelope, and a focus DC offset (FODC) from a detection signal of the ROM data region and determining whether the obtained value is within a tolerance range; and obtaining an initial skew compensation value using the obtained value when the obtained value is within the tolerance, changing the magnitude of current applied to an actuator designed to perform driving in at least three-axis directions to drive an objective lens of an optical pickup assembly in a radial tilt direction when the obtained value is not within the tolerance range, and repeating the obtaining of one of the jitter best, the RF envelope, and the FODC and changing the magnitude of the current until the obtained value is within the tolerance range.
Abstract:
An optical pickup of an optical disk drive. The optical pickup includes a laser beam source for generating a laser beam; a pickup base having an objective lens for projecting the laser beam generated from the laser beam source to an information recording surface of an optical disk; a variation adjusting plate which is movably disposed on the pickup base to be moved in vertical and lateral directions, and has a rotational hole formed at a central portion thereof; and a rotation adjusting plate including a rotational section having a predetermined curvature which is inserted into the rotational hole of the variation adjusting plate, and with a laser beam source fixed therein, the rotation adjusting plate being rotated with respect to the variation adjusting plate. An optical system including a collimating lens and a reflective mirror is fixed to the pickup base. Since the light path with respect to the field angle and the beam shift is adjusted by moving and/or rotating the light emitting point of the laser beam source with respect to the light axis of the collimating lens, the size of the optical pickup becomes smaller. Further, since the collimating lens and the light source are fixed to the respective structures, the light path is controlled regardless of the focal distance of the collimating lens. Accordingly, if the focal distance of the collimating lens has to be lengthened, the beam shift and the field angle can be precisely adjusted without enlarging the optical pickup.
Abstract:
An optical recording and reproducing apparatus for adjusting a tilt of an optical pickup in accordance with an amount of jitter of a reproduction signal, a tilt adjusting method therefor, and a recording control method. The optical recording and reproducing apparatus includes an optical pickup having an object lens, a tilt adjusting unit for adjusting a tilt angle of the object lens, a jitter detecting unit for detecting an amount of jitter of a reproducing signal generated by the optical pickup from a disk, and a tilt controlling unit for minimizing the amount of jitter by feeding the amount of jitter detected by the jitter detecting unit back to the tilt adjusting unit. According to the optical recording and reproducing apparatus, there is no need for a space in which a displacement sensor detecting the tilt angle of the optical pickup faces the disk.
Abstract:
In an optical pickup, a focus error detector for detecting a focus error of an objective lens for an optical disk includes a focusing lens for focusing the reflected light of the optical disk, a diffraction optical device for diffracting the reflected light focused by the focusing lens into two light rays, two bi-segmented photo-detectors for receiving the two split light rays, respectively, and a circuit for outputting a desired focus error signal from the signal detected from the photo-detectors. The circuit outputs a pure focus error signal without errors created by the deviation of the light amount in the photo-detectors due to the tilt or shift of the reflected light, thereby contributing to the stable operation and miniaturization of the optical pickup.
Abstract:
An optical pickup device corresponding to an optical recording medium having a plurality of recording layers, and an optical drive using the device are provided. The optical pickup device includes a collimator lens disposed between an object lens and a light source. The collimator lens adjusts a focal length with respect to the optical recording medium, and the object lens focuses light passing through the collimator lens, on the optical recording medium. The object lens is optically optimized for an upper or second-upper recording layer of the optical recording medium.
Abstract:
A magnetic circuit and an optical recording and/or reproducing apparatus employing the magnetic circuit, having: a magnet with first and second magnetic portions adjacent to each other and opposite in polarity, and third and fourth magnetic portions surrounding the first and second magnetic portions, respectively, and have opposite polarities to the first and second magnetic portions, respectively; and at least one of a tracking coil unit or a focus coil unit. The tracking coil unit has first through third tracking coils arranged in a tracking direction so that each tracking coil interacts with two of the first through fourth magnetic portions. The focus coil unit has first through fourth focus coils, two of which are disposed in a focus direction to interact with the first and third magnetic portions, and the remaining two of which are disposed in the focus direction to interact with second and fourth magnetic portions.