Abstract:
Navigation solutions for a pedestrian or vehicle user are obtained by determining whether the direction and location of the user obtained from a map at least substantially conform to the direction and location of the user based on one or more measurements obtained from one or more sensors, and if the direction and location of the user obtained from the map at least substantially conform to the direction and location of the user based on one or more measurements obtained from one or more sensors, computing the navigation solutions based, at least in part, on the direction and location of the user.
Abstract:
Systems and methods for constraining growth in position uncertainty of a mobile device are based on determination that the mobile device is in a pedestrian mode. Determination of the pedestrian mode is based on detection of steps by a pedometer, speed of motion of the mobile device, turn rate determination by a gyroscope, charging condition of the mobile device, availability of satellite signals, etc. Step counts and/or turn rate information are used to ascertain the distance that a pedestrian user may have traversed from a last known position, based on which growth of position uncertainty is controlled.
Abstract:
The disclosure is related to managing power consumption of a user equipment (UE) while providing location services. An aspect determines whether a given sensor configuration of a plurality of sensor configurations minimizes power consumption of the UE, wherein a sensor configuration comprises a set of values for a set of one or more sensor parameters controllable by the UE, and, based upon the determining, sets the set of one or more sensor parameters to the given sensor configuration.
Abstract:
The disclosure generally relates to calculating gyroscope bias in a vehicle. Methods, apparatus and systems are disclosed. A method can include: assuming a maximum turning rate for a vehicle based at least in part on speed of the vehicle; and determining gyroscope bias information based at least in part on the assumed maximum turning rate.