Abstract:
In an orthogonal frequency division multiplexing (OFDM) multiple-input multiple-output (MIMO) wireless communication system, a method is provided for channel estimation using a sub-space method suitable for computer implementation. The system has both a transmitter and a receiver including a plurality of antennas. The method comprising the step of: a receiver using at least one pseudo noise (PN) to correlate desired information relating to a received symbol; transforming the correlated information into frequency domain; and performing channel estimation using a sub-space method suitable for computer implementation.
Abstract:
In a TDS-OFDM communications system, a frame structure comprising: a frame such that within a frame time, a transmitted signal comprising a preamble, a downlink sub-frame, and an uplink sub-frame is provided.
Abstract:
A method and apparatus for a receiver to estimate the received power for each transmitting BS. The power measure can be obtained by using some or all receiving antennas.
Abstract:
In an orthogonal frequency division multiplexing (OFDM) multiple-input multiple-output (MIMO) wireless communication system where both a transmitter and a receiver include a plurality of antennas, a method comprising the step of: a receiver using at least one pseudo noise (PN) to correlate desired information relating to a received symbol.
Abstract:
In an OFDM system having PN sequences as guard intervals, a method is used for synchronization. The method comprises the steps of: providing a plurality of base stations; providing a plurality of mobile stations; both the base stations and the mobile stations are adapted to transmit and receive signals associated with a parameter using the PN sequences for synchronization.
Abstract:
Methods, systems, and devices, including computer programs encoded on a computer storage medium are provided for combined dynamic causal modeling and biophysics modeling of brain function. In particular, the disclosed methods of modeling brain function can be used to integrate brain function measurements by two or more methods, such as functional neuroimaging and electrophysiology. Sequential model fitting is used to improve modeling accuracy to generate a more comprehensive model of brain neuronal circuitry.
Abstract:
A compound is disclosed. The compound has the general structure: wherein Y is selected from the group consisting of hydrocarbons, hydrocarbons including nitrogen in the carbon backbone, and hydrocarbons including oxygen in the carbon backbone; wherein R1 and R2 are each independently selected from the group consisting of hydrogen, linear hydrocarbons, branched hydrocarbons, and cyclic hydrocarbons and wherein R1 and R2 are not both hydrogen; wherein X is selected from the group consisting of CH2, O, N—R3, S, and nothing and wherein R3 is selected from the group consisting of hydrogen, branched hydrocarbons, linear hydrocarbons, and cyclic hydrocarbons; wherein m is an integer between 1 and 50, inclusive; wherein n is an integer between 1 and 10,000, inclusive; and wherein p, q, and z are each independently an integer greater than 0.
Abstract:
A pigment-based ink comprises: a non-polar carrier fluid; and pigment particles suspended in the non-polar carrier fluid. The pigment particles are coated with a metal oxide that is modified with at least one silane coupling agent to introduce functional groups, steric stabilizers or both. A combination of an electronic display and an electronic ink is provided, as is a method for modifying the pigment particles.
Abstract:
Surfactants are provided that have a hydrophobic tail portion and a hydrophilic head portion. The hydrophilic head portion includes a terminal dialkyl-substituted tertiary amine or a terminal cycloalkyl-substituted tertiary amine. Also provided are pigment-based inks employing the surfactant, a combination of an electronic display and the pigment-based inks, and a process for reducing conductivity in primary amine-based surfactants and improving reliability of electronic inks employing such surfactants.
Abstract:
A dual color electronically addressable ink includes a non-polar carrier fluid; a first colorant of a first color; and a second colorant of a second color that is different than the first color. The first colorant includes a first particle core, and a first functional group attached to a surface of the particle core. The first functional group is capable of carrying a positive charge and is chosen from a base or a salt of the base. The second colorant includes a particle core, and a second functional group attached to a surface of the particle core. The second functional group is capable of carrying a negative charge and is chosen from an acid or a salt of the acid. The ink further includes an additive chosen from polyhydroxystearic amide salt, polyhydroxystearic acid, aromatic butyric acid, and combinations thereof.