Abstract:
A method estimates a duration of a battery performance rehabilitation phase. The method includes activating the battery performance rehabilitation phase when a power available in a battery is below a required minimum power level. The method also includes supplying a model of operation of the battery including, in a plane (BSOC, T) where BSOC denotes a state of charge of the battery and where T denotes a battery temperature, an isopower curve representing operating points of the battery enabling the battery to substantially deliver the required minimum power level, the curve separating operating points making it possible to deliver a power level above the required minimum power level from operating points enabling the battery to deliver only a power level below the required minimum power level. The method also includes estimating the duration of the battery performance rehabilitation phase from the model of operation supplied.
Abstract:
A method for managing an electrochemical accumulator or a storage battery includes determining an estimated value of a state of deterioration of the accumulator from the accumulator's history of voltage values, intensity of current flow, and temperature. The estimated value is a barycentric value of the state of deterioration calculated as a barycenter of at least two values. The at least two values include a first value indicative of the state of deterioration of the accumulator calculated by a first method and a second value indicative of the state of deterioration of the accumulator calculated by a second method different from the first method. From an initial commissioning state of the accumulator, barycentric coefficients are varied at least once to calculate the next barycentric value when a previous value of the state of deterioration of the accumulator, calculated according to the first method, has passed a first threshold.
Abstract:
An automotive vehicle with electric or hybrid propulsion including a rechargeable electric accumulation battery and a braking system allowing recovery of energy, the battery being rechargeable during braking phases and during charging phases under control of a supply system including a mechanism determining a maximum allowable power for the battery. The mechanism determining the maximum allowable power for the battery includes a first mapping making it possible to read a first maximum power on the basis of a temperature and of a state of charge of the battery, and a second mapping making it possible to read a second maximum power based on the temperature and of the state of charge of the battery.
Abstract:
An electrical power supply system includes a battery of cells, the battery including an ammeter configured to measure battery current flowing through the battery, and at least one voltage sensor configured to measure voltage at terminals of a cell. An electronic control unit is configured to deliver a maximum permissible electrical power setpoint. The control unit is configured to calculate a maximum permissible electrical power associated with a cell by taking the minimum of at least two values, including a first electrical power and a second electrical power.
Abstract:
A system and method estimates the state of charge of a battery comprising at least two modules each provided with at least one cell. A sensor senses a series current flowing through all cells of the modules connected in series. A switching device selectively disconnects one of the modules, the other modules remaining connected in series. A calculator calculates the state of charge of the cells through which the series current flows from the integration of the series current and calculates the state of charge of each of the cells of the disconnected module from an open circuit voltage thereof.